首页> 外文会议>2010 IEEE International Symposium on Parallel amp; Distributed Processing (IPDPS) >Improving numerical reproducibility and stability in large-scale numerical simulations on GPUs
【24h】

Improving numerical reproducibility and stability in large-scale numerical simulations on GPUs

机译:在GPU上进行大规模数值模拟时提高数值再现性和稳定性

获取原文
获取原文并翻译 | 示例

摘要

The advent of general purpose graphics processing units (GPGPU's) brings about a whole new platform for running numerically intensive applications at high speeds. Their multi-core architectures enable large degrees of parallelism via a massively multi-threaded environment. Molecular dynamics (MD) simulations are particularly well-suited for GPU's because their computations are easily parallelizable. Significant performance improvements are observed when single precision floating-point arithmetic is used. However, this performance comes at the cost of accuracy: it is widely acknowledged that constant-energy (NVE) MD simulations accumulate errors as the simulation proceeds due to the inherent errors associated with integrators used for propagating the coordinates. A consequence of this numerical integration is the drift of potential energy as the simulation proceeds. Double precision arithmetic partially corrects this drifting, but is significantly slower than single precision, comparable to CPU performance. To address this problem, we extend the approaches of previous literature to improve numerical reproducibility and stability in MD simulations, while assuring efficiency and performance comparable to that when using the GPU hardware implementation of single precision arithmetic. We present development of a library of mathematical functions that use fast and efficient algorithms to fix the error produced by the equivalent operations performed by GPU. We successfully validate the library with a suite of synthetic codes emulating the MD behavior on GPUs.
机译:通用图形处理单元(GPGPU)的出现为高速运行数字密集型应用程序提供了一个全新的平台。他们的多核体系结构通过大规模的多线程环境实现了高度的并行性。分子动力学(MD)仿真特别适合GPU,因为它们的计算易于并行化。当使用单精度浮点算法时,可以观察到显着的性能改进。但是,这种性能是以准确性为代价的:众所周知,由于与传播坐标所使用的积分器相关的固有误差,恒定能量(NVE)MD模拟会随着模拟的进行而累积误差。这种数值积分的结果是随着模拟的进行势能的漂移。双精度算术可部分纠正此漂移,但与单精度相比要慢得多,与CPU性能相当。为了解决这个问题,我们扩展了先前文献的方法,以改善MD仿真中的数值重现性和稳定性,同时确保效率和性能可与使用单精度算术的GPU硬件实现相比。我们目前正在开发数学函数库,该函数库使用快速高效的算法来修复由GPU执行的等效操作所产生的错误。我们使用了一组合成代码来成功验证该库,这些合成代码可以模拟GPU上的MD行为。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号