首页> 外文会议>2008 Global Powertrain Congress : Engine, transmission, propusion amp; emission >Integration of Heavy Duty Diesel Engine Technology to Achieve US EPA 2010 Emissions Compliance with Improved Efficiency
【24h】

Integration of Heavy Duty Diesel Engine Technology to Achieve US EPA 2010 Emissions Compliance with Improved Efficiency

机译:集成重型柴油机技术以提高美国EPA 2010排放标准

获取原文
获取原文并翻译 | 示例

摘要

The US EPA 2010 emissions standard poses a significant challenge for developing clean diesel powertrains that are affordable. Along with exhaust emissions, an emphasis on heavy duty vehicle fuel efficiency is being driven by increased energy costs as well as the potential regulation of greenhouse gases. An important element of the success of meeting emissions while significantly improving efficiency is leveraging Cummins component technologies such as fuel injection equipment, aftertreatment, turbomachinery, electronic controls, and combustion systems. Innovation in component technology coupled with system integration is enabling Cummins to move forward with the development of high efficiency clean diesel products with a long term goal of reaching a 57% peak brake thermal efficiency for the engine plus aftertreatment system.rnThe Cummins global product strategy for diesel powertrain systems is to create engine architectures that allows system calibration to achieve a wide range of system out NOx compliance to meet the diversity of future worldwide exhaust emissions standards. A variety of engine architectures is being explored by Cummins to meet US EPA 2010 NOx emissions based on two primary strategies to control NOx: cooled EGR and selective catalytic reduction (SCR). An in-cylinder solution for NOx control based on cooled EGR can be achieved with advancements in component technology thus eliminating the need for NOx aftertreatment. The current in-cylinder architecture can achieve compliance with the 2010 NOx regulation along with particulate matter compliance with the use of a diesel particulate filter. The fuel economy of the system is comparable to that of the 2007 current product.rnMuch of the enabling technology for in-cylinder NOx control can also be used to provide significant fuel economy improvements for the variety of SCR related architectures. However, there still remains a significant fuel economy benefit associated with the SCR architectures compared to the in-cylinder NOx control architecture using the same component technology. Additional engine performance capability can be achieved in the form of increased power density for an SCR engine architecture assuming the vehicle application can accommodate a larger catalyst size. The larger catalyst poses challenges for vehicle packaging, thermal management of the catalyst bed temperature, and cost. Therefore, there exists a complex system integration and optimization task to select the right SCR catalyst size for a given power density that can involve the choice of engine displacement for a given application. Analysis and engine testing at Cummins indicate that the SCR engine architecture is better suited for engine downsizing compared to an in-cylinder solution. The power density of the in-cylinder NOx control architecture is limited by peak cylinder pressure (PCP) duernto the high rate of charge flow. If the PCP capability of the engine is increased, higher power density levels can be achieved.rnFor the engine architectures that contain cooled EGR, there exists an opportunity to recovery some of the waste heat from the EGR system and the exhaust stream. Analysis indicates that a 10% fuel economy improvement is possible with an organic Rankine cycle waste heat recovery (WHR) system. The fuel efficiency improvement can be obtained via 6% from EGR derived WHR, 2% from exhaust derived WHR, and 2% from the use of electrical accessories. Engine experiments have shown that a 5% improvement is possible from the EGR derived WHR system which is in good agreement with the analysis. Additional engine testing is planned to validate the benefits of exhaust derived WHR and electrical accessories.
机译:美国EPA 2010排放标准对开发负担得起的清洁柴油动力总成提出了重大挑战。随着废气排放的增加,能源成本的增加以及对温室气体的潜在管制也推动了对重型车辆燃油效率的重视。成功实现排放并显着提高效率的重要因素是利用康明斯组件技术,例如燃料喷射设备,后处理,涡轮机械,电子控制和燃烧系统。组件技术的创新以及系统集成使康明斯能够继续开发高效清洁柴油产品,并长期目标是使发动机和后处理系统的峰值制动热效率达到57%。柴油动力总成系统将创建允许系统校准的发动机架构,以实现广泛的系统NOx符合性,以满足未来全球废气排放标准的多样性。康明斯正在探索多种发动机架构,以满足美国EPA 2010 NOx排放的要求,该控制基于两种主要的控制NOx策略:冷却的EGR和选择性催化还原(SCR)。随着组件技术的进步,可以实现基于冷却EGR的缸内NOx控制解决方案,从而消除了对NOx后处理的需求。当前的缸内架构可达到符合2010年NOx法规的要求,并符合使用柴油机微粒过滤器的微粒物质要求。该系统的燃油经济性可与2007年的产品相媲美。rn缸内NOx控制的许多启用技术也可用于为各种SCR相关架构提供显着的燃油经济性改进。但是,与使用相同组件技术的缸内NOx控制架构相比,SCR架构仍具有可观的燃油经济性优势。假设车辆应用可容纳更大的催化剂尺寸,则可通过提高SCR发动机架构的功率密度的形式来实现额外的发动机性能。较大的催化剂对车辆包装,催化剂床温度的热管理和成本提出了挑战。因此,存在复杂的系统集成和优化任务,以针对给定的功率密度选择合适的SCR催化剂尺寸,这可能涉及给定应用的发动机排量选择。康明斯的分析和发动机测试表明,与缸内解决方案相比,SCR发动机架构更适合于发动机小型化。缸内NOx控制架构的功率密度受峰值进气压力(PCP)的限制,这是因为充气流量较高。如果提高了发动机的PCP能力,则可以实现更高的功率密度水平。对于包含冷却EGR的发动机体系结构,存在从EGR系统和废气流中回收一些废热的机会。分析表明,使用有机朗肯循环余热回收(WHR)系统可以使燃油经济性提高10%。通过使用EGR产生的WHR,通过废气产生的WHR产生2%的排放,通过使用电气附件获得2%的排放可以提高燃油效率。发动机实验表明,采用EGR的WHR系统可能会提高5%,这与分析结果非常吻合。计划进行其他发动机测试,以验证废气衍生的WHR和电气附件的益处。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号