首页> 外文会议>2007 Asian symposium on computational heat transfer and fluid flow >A NUMERICAL STUDY OF THE EFFECT OF ROUGHNESS ON THE TURBINE BLADE CASCADE PERFORMANCE
【24h】

A NUMERICAL STUDY OF THE EFFECT OF ROUGHNESS ON THE TURBINE BLADE CASCADE PERFORMANCE

机译:粗糙度对涡轮叶片级联性能影响的数值研究

获取原文

摘要

In the present work the numerical simulation of a rectilinear blade cascade with surface roughness up to 100 祄 over different locations of the turbine blade has been performed. The static pressure coefficient over the blade surfaces, mass-averaged loss coefficient and outlet angle at an axial distance of 15% of chord downstream of the cascade outlet, for various levels of roughness are compared with available experimental data and the agreement is good. The computation was extended to roughness at different locations and flow at Mach number 0.6 to 0.9 that is typical of power plant steam turbines. The profile loss coefficient, velocity angle, turbulent kinetic energy, turbulent dissipation rate and Mach number are measured at inlet total pressure of 150 kPa at 15% of the chord downstream of the cascade outlet. The variation of the static pressure coefficient Cp is measured at the blade surface. The suction and pressure surface of the turbine blades are divided into three equal parts leading edge, middle chord and trailing edge for the purpose of comparison. The CFD code FLUENT?has been used for this purpose. It is observed that the effect of roughness on the efficiency of the turbine blade is more on the suction surface than that on the pressure surface. In case of suction surface, mass-averaged profile losses are more when the roughness is provided on the trailing edge than on middle chord and losses are least when the roughness is provided on the leading edge. The pattern of mass average profile losses is, however, different for the roughness on the pressure surface; here the losses are more when the roughness is provided on the leading edge and minimum when roughness is provided on the trailing edge.
机译:在本工作中,对涡轮叶片在不同位置的表面粗糙度高达100 100的直线叶栅进行了数值模拟。将叶片表面上的静压力系数,质量平均损耗系数和叶栅下游级联弦轴轴向距离的15%处的出口角度(对于各种粗糙度的水平)与可用的实验数据进行了比较,结果吻合良好。该计算扩展到了不同位置的粗糙度和流量为0.6至0.9的马赫数,这是电厂蒸汽轮机的典型特征。轮廓损失系数,速度角,湍动能,湍流耗散率和马赫数是在级联出口下游弦的15%处入口总压力为150 kPa时测量的。在叶片表面测量静压系数Cp的变化。为了进行比较,将涡轮叶片的吸力和压力面分为三个相等的部分:前缘,中弦和后缘。为此,使用了CFD代码FLUENT?。可以看出,粗糙度对涡轮叶片效率的影响在吸力表面上比在压力表面上更大。在吸力面的情况下,当在后缘上提供粗糙度时,与在中弦上相比,质量平均轮廓损失更大,而在前缘上提供粗糙度时,损失最小。然而,质量平均轮廓损失的模式因压力表面的粗糙度而不同;这里,当在前缘上提供粗糙度时,损失更大,而在后缘上提供粗糙度时,损失最小。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号