首页> 外文会议>2006 SPE Annual Technical Conference and Exhibition (ATCE 2006): Focus on the Future >A Four-Component, Two-Phase Flow Model for CO2 Storage and Enhanced CoalbedMethane Recovery
【24h】

A Four-Component, Two-Phase Flow Model for CO2 Storage and Enhanced CoalbedMethane Recovery

机译:用于二氧化碳储存和增强煤层气采收率的四组分,两相流模型

获取原文
获取原文并翻译 | 示例

摘要

Injection of CO2 into deep unminable coal seams is an optionrnfor geological storage of CO2. Moreover, injection of CO2rnmay enhance the recovery CH4 in these systems making coalrnreservoirs interesting candidates for sequestration.rnNew analytical solutions are presented for two-phase,rnthree- and four-component flow with volume change onrnmixing in adsorbing systems. We analyze the simultaneousrnflow of water and gas containing multiple adsorbingrncomponents. The displacement problem is solved by thernmethod of characteristics. Mixtures of N2, CH4, CO2 and H2Ornare used to represent enhanced coal bed methane recoveryrnprocesses. The displacement behavior is demonstrated to bernstrongly dependent on the relative adsorption strength of therngas components.rnIn ternary systems, two types of solutions result. When arngas rich in CO2 displaces a less strongly adsorbing gas (likernCH4), a shock solution results. As the injected gas propagatesrnthrough the system, CO2 is removed from the mobile phase byrnadsorption, while desorbed gas propagates ahead of the CO2rnfront. The adsorption of CO2 reduces the flow velocity of therninjected gas, delaying breakthrough and allowing for morernCO2 to be sequestered per volume of CH4 produced. Forrninjection gases rich in N2, a decrease in partial pressure isrnrequired to displace the preferentially adsorbed CH4, and arnrarefaction solution results.rnIn quaternary displacements with injection gas mixtures ofrnCO2 and N2, the relative adsorption strength of therncomponents result in solutions that exhibit features of both thernN2-rich and CO2-rich ternary displacements.rnAnalytical solutions for enhanced coal bed methanern(ECBM) recovery processes provide insight into the complexrninterplay of adsorption, phase behavior and convection.rnImproved understanding of the physics of these displacementsrnwill aid in developing more efficient and physically accuratetechniques for predicting the fate of injected CO2 in thernsubsurface.
机译:将二氧化碳注入深不可开采的煤层是二氧化碳地质存储的一种选择。此外,注入CO 2可能会提高这些系统中CH 4的回收率,使煤储层成为被封存的有趣候选物。rn提出了一种新的分析解决方案,用于两相,三,四组分流动以及吸附系统中混合时的体积变化。我们分析了含有多种吸附组分的水和气的同时流动。位移问题通过特性方法解决。 N2,CH4,CO2和H2Ornare的混合物用来代表增强的煤层气回收工艺。位移行为被证明强烈依赖于天然气组分的相对吸附强度。在三元体系中,产生两种类型的溶液。当富含CO2的阿纳加斯气体置换吸附力较弱的气体(如CH4)时,会产生冲击溶液。当注入的气体通过系统传播时,CO 2通过吸附从流动相中去除,而解吸的气体则在CO 2前沿传播。 CO2的吸附会降低注入气体的流速,延迟穿透时间,并允许每生产的CH4量螯合更多的CO2。要求注入富含N2的注入气体,需要降低分压来置换优先吸附的CH4,并产生反折射溶液。rn在注入气体为rnCO2和N2的混合物的四元置换中,rn组分的相对吸附强度导致溶液同时显示rnN2的特征富CO2和富CO3的三元驱替。强化煤层甲烷(ECBM)回收过程的分析解决方案可洞悉吸附,相行为和对流之间的复杂相互作用。增进对这些驱替物理的认识,将有助于开发更有效和物理准确的技术预测地下二氧化碳注入的命运。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号