首页> 外文会议>2005 SPE annual technical conference and exhibition (ATCE 2005) >Probabilistic Forecasting for Mature Fields With Significant Production History:A Nemba Field Case Study
【24h】

Probabilistic Forecasting for Mature Fields With Significant Production History:A Nemba Field Case Study

机译:具有重要生产历史的成熟油田的概率预测:Nemba油田案例研究

获取原文
获取原文并翻译 | 示例

摘要

The Nemba Field is the third largest oilfield in terms of dailyrnproduction in the Block 0 Concession in the Republic ofrnAngola. Oil production from the field began in January 1996rnthrough an Early Production System (EPS). The field reachedrna peak production rate of approximately 110 MBOPD inrnAugust 2002 and is currently undergoing crestal gas injectionrnat an instantaneous Voidage Replacement Ratio (VRR) ofrnapproximately 0.85. The field is being evaluated for therninstallation of a new compression train to allow for gasrninjection at or above a VRR of 1.0.rnTo support this effort, along with other reservoirrnmanagement activities, a reservoir characterization andrnsimulation study was performed in 2003/2004. The coarse-grid,rnreservoir simulation model generated from this study wasrna six component equation-of-state (EOS) model containingrnapproximately 246,906 total cells (136,675 active) withrnapproximately 33,794 non-neighbor connections to accountrnfor complex faulting and truncation across stratigraphicrnintervals. The workflow for this study consisted of datarnintegration, fine-grid model development, scale-up, coarse-gridrnmodel development, history matching, andrndeterministic/probabilistic forecasting. What distinguishes thernprobabilistic forecasting of this brown-field development fromrnthat of comparable green-field developments is the availablernproduction history and the need to retain the integrity of thernhistory match while fully assessing the impact of uncertaintyrnlevels in key geologic and project variables (uncertainrnparameters).rnThe methodology employed in this study is similar to thernframework proposed by Castellini et. Al.1 , but was adapted tornuse more off-the-shelf technologies. This methodology usesrnboth single variable input modifications (sensitivity analysis) and simultaneous, multi-variable input modificationsrn(experimental design). The sensitivity analysis were used torndetermine the appropriate uncertainty ranges for individualrnuncertain factors while the experimental design was used torndetermine the interactions of these uncertainty factors.rnDuring the experimental design portion of the analysis,rnmodifications were made to the history matched input data andrnthe simulator was run through both the historical andrnprediction periods of the project. In order to retain the integrityrnof the history match, a Quality of History Match (QoHM)rnvariable was defined to quantify and rank any degradation tornthe history match caused by perturbation of uncertain data.rnProxy equations for the simulation response were thenrngenerated for the QoHM variable and the project resultrnvariables: Estimated Ultimate Recovery (EUR) and discountedrncumulative oil production. Finally, a two-step Monte Carlornsimulation approach was used to develop the cumulativerndistribution functions (CDFs) for all alternatives consideredrnfor the gas compressor project.rnIn this two-step Monte Carlo simulation, the uncertainrnfactors were sampled from their individual CDFs for use in arnMonte Carlo trial. The sampled data were first input into thernproxy equation for the QoHM variable to determine the impactrnon the History Match. If the selected input data were found tornmeet predetermined acceptance criteria for the QoHMrnvariable, then they were passed to the second step: input to thernproxy equations for the project result variables. Input datarncombinations that did not meet the acceptance criteria wererndiscarded. This process was repeated for the desired number ofrnMonte Carlo trials to complete the simulation.rnTopics to be discussed in detail in this paper include:rndevelopment of the reservoir simulation model, application ofrnthe proposed methodology for probabilistic forecasting,rndevelopment of the QoHM variable, selection of the QoHMrnacceptance criteria, the two-step Monte Carlo simulationrnapproach, final project results, and lessons learned / bestrnpractices in probabilistic forecasting of brown-fieldrndevelopment projects.
机译:就恩哥拉共和国0号区块的日产量而言,Nemba油田是第三大油田。该油田的石油生产始于1996年1月,通过早期生产系统(EPS)进行。 2002年8月,该油田达到峰值产量,约为110 MBOPD,目前正在以大约0.85的瞬时空隙率(VRR)注入地壳气体。正在对该油田进行评估,以安装新的压缩系,以允许VRR等于或高于1.0的注气。为了支持这项工作以及其他储层管理活动,2003/2004年进行了储层表征和模拟研究。从该研究中生成的粗网格,油藏模拟模型是六分量状态方程(EOS)模型,其中包含约246,906个总单元(136,675个活动单元),其中约33,794个是非邻域连接,以解释跨地层间隔的复杂断层和截断。这项研究的工作流程包括数据集成,细网格模型开发,按比例放大,粗网格模型开发,历史匹配以及确定性/概率性预测。这种棕场开发的概率预测与可比的绿地开发的概率预测的区别在于可用的生产历史以及在全面评估关键地质和项目变量(不确定性参数)不确定性水平的影响的同时保持历史匹配的完整性的必要性。在这项研究中使用的类似于Castellini等人提出的框架。 Al.1,但已被修改为使用更多现成的技术。该方法既使用单变量输入修改(灵敏度分析)又使用同时多变量输入修改(实验设计)。灵敏度分析用于确定各个不确定因素的适当不确定性范围,而实验设计用于确定这些不确定因素的相互作用。rn在分析的实验设计部分中,对历史匹配的输入数据进行了修改,并且运行了模拟器项目的历史和预测期。为了保持历史匹配的完整性,定义了历史匹配质量(QoHM)变量以量化和排序由于不确定数据的扰动而导致的历史匹配的任何劣化。然后为QoHM变量生成模拟响应的代理方程。项目结果变量:估计的最终采收率(EUR)和折现的累计石油产量。最后,采用两步蒙特卡洛模拟方法为气体压缩机项目考虑的所有替代方案开发累积分布函数(CDF)。在此两步蒙特卡洛模拟中,不确定因素是从其各自的CDF中采样以用于arnMonte Carlo试用。首先将采样数据输入到QoHM变量的proxy方程中,以确定历史匹配项。如果发现选择的输入数据满足QoHMrn变量的预定接受标准,则将它们传递到第二步:输入项目结果变量的proxy方程。丢弃不符合接受标准的输入数据组合。为完成所需的蒙特卡洛试验次数,重复进行此过程以完成模拟。本文将详细讨论的主题包括:开发油藏模拟模型,应用所提出的概率预测方法,开发QoHM变量,选择模型。 QoHMrn接受标准,两步蒙特卡洛模拟方法,最终项目结果以及棕场开发项目概率预测中的经验教训/最佳实践。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号