首页> 外文会议>2005 SPE annual technical conference and exhibition (ATCE 2005) >Determination of Optimal Window Size in Pressure Derivative Computation UsingFrequency-omain Constraints
【24h】

Determination of Optimal Window Size in Pressure Derivative Computation UsingFrequency-omain Constraints

机译:使用频率-脉动约束确定压力导数计算中的最佳窗口大小

获取原文
获取原文并翻译 | 示例

摘要

Analysts commonly use the pressure derivative to identifyrnflow regimes and well-test-interpretation models in pressure-transientrntest analysis. Analysts and commercial analysisrnsoftware commonly use Bourdet's approach to calculaternderivatives from measured pressure data. Bourdet's algorithmrnincludes a weighted central-difference approximation with arncertain "window" size based on an increment in the logarithmrnof time, represented by the symbol L. Although test analystsrncommonly select L in the range of 0.1 to 0.3 log cycle, norncriterion is available for choosing the optimal value of L. Anrnunresolved issue in pressure transient test analysis is how torndetermine the optimal L based on the data for each individualrndata set such that the data are smoothed sufficiently to removernnoise that obscures the signal but not smoothed to the extentrnthat the signal itself is changed.rnThis paper presents a new approach to calculate thernpressure derivative, and improves the results compared tornthose we achieved in a previous paper, SPE 84471. Thisrnapproach determines the optimal window size to use withrnBourdet's algorithm by employing the fast Fourier transform,rnGaussian filtering, and frequency-domain constraints. Ourrnapproach denoises the data in the frequency domain,rndetermines the optimal window size, and, when coupled withrnBourdet's algorithm in the time domain using the optimalrnwindow size, provides an improved pressure derivative. Wernalso developed a novel adaptive smoothing algorithm byrnrecursive differentiation-integration to further improvernpressure derivative calculation. Our method can efficientlyrnsuppress measurement errors and produce smooth pressurernderivatives from well-test data. Equally important, it canrnprevent over-smoothing of the data by inappropriate use ofrnlarge window size, and it can preserve the characteristicrnbehavior of the pressure derivative.rnWe validate our approach with a synthetic example andrndemonstrate its applicability to actual field examples.
机译:分析师通常使用压力导数来识别压力瞬变分析中的流动状态和试井解释模型。分析师和商业分析软件通常使用Bourdet的方法从测得的压力数据中计算导数。 Bourdet的算法包括基于对数时间增量(以符号L表示)的,具有一定“窗口”大小的加权中心差近似值,以符号L表示。尽管测试分析人员通常选择在0.1到0.3对数周期范围内的L,但可以使用标准准则来选择L的最佳值。压力瞬态测试分析中未解决的问题是如何基于每个数据集的数据来确定最佳L,以使数据充分平滑以消除使信号模糊的噪声,但未平滑到信号本身发生变化的程度.rn本文提出了一种计算压力导数的新方法,并且与我们在前一篇论文SPE 84471中获得的结果相比,改进了结果。该方法通过快速傅里叶变换,rnGaussian滤波和频率来确定使用rnBourdet算法的最佳窗口大小。域约束。我们的方法在频域中对数据进行消噪,确定最佳的窗口大小,并与使用最佳窗口大小在时域中的布尔德特算法结合使用时,可以提供改进的压力导数。 Wern还通过递归微分-积分开发了一种新颖的自适应平滑算法,以进一步改善压力导数计算。我们的方法可以有效地抑制测量误差,并从经过良好测试的数据中得出平滑的压力导数。同样重要的是,它可以通过不适当使用较大的窗口大小来防止数据过度平滑,并且可以保留压力导数的特性。我们通过一个综合示例验证了我们的方法,并证明了其在实际现场示例中的适用性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号