首页> 外文会议>2003 ASME(American Society of Mechanical Engineers) Turbo Expo; Jun 16-19, 2003; Atlanta, Georgia >FLOW FIELD AND STRUCTURE OF TURBULENT HIGH-PRESSURE PREMIXED METHANE/AIR FLAMES
【24h】

FLOW FIELD AND STRUCTURE OF TURBULENT HIGH-PRESSURE PREMIXED METHANE/AIR FLAMES

机译:湍流高压甲烷/空气火焰的流场和结构

获取原文
获取原文并翻译 | 示例

摘要

The present study focuses on the flow field characterization of highly turbulent premixed flames, typical for stationary gas turbines. Mean flame front position and flame front structure at high inlet temperatures, lean mixtures, and high pressures are studied, too. Turbulence intensities and integral length scales have been measured in an isothermal flow field with the help of Particle Image Velocimetry (PIV). Mean flame front position and flame structure have been studied using Planar Laser-Induced Fluorescence (PLIF) of the OH radical. Turbulence intensities and integral length scales have been measured for different turbulence generating grid geometries and operating conditions. The results show that the combustor flow field can be divided in a region close to the combustor head, where grid-generated turbulence is dominant, and a region further downstream, strongly influenced by turbulence generated in the shear layer. In general the measured turbulence intensity scales well with the bulk velocity. For a systematic variation of the turbulent Reynolds number, Damkoehler number, and Karlovitz number the mean flame front position and the flame front structure were investigated. Increasing the pressure and thereby mainly increasing the turbulent Reynolds number only slightly affects the mean flame front position but increasingly corrugates the flame front. Increasing the bulk velocity and thereby the turbulence intensity does not affect the mean flame front position but due to the higher turbulence the flame front is increasingly corrugated.
机译:本研究着重于典型用于固定式燃气轮机的高湍流预混火焰的流场表征。还研究了高入口温度,稀薄混合物和高压下的平均火焰前沿位置和火焰前沿结构。借助粒子图像测速技术(PIV)在等温流场中测量了湍流强度和积分长度标度。已使用OH自由基的平面激光诱导荧光(PLIF)研究了平均火焰前沿位置和火焰结构。已经针对产生湍流的不同几何形状和运行条件测量了湍流强度和整体长度标度。结果表明,燃烧器的流场可以在靠近燃烧器头部的区域中划分,在该区域中,网格产生的湍流占主导,而在下游的区域则受到剪切层中产生的湍流的强烈影响。通常,测得的湍流强度与整体速度成比例。对于湍流雷诺数,Damkoehler数和Karlovitz数的系统变化,研究了平均火焰前沿位置和火焰前沿结构。增加压力,从而主要增加湍流雷诺数只会轻微影响平均火焰前沿位置,但会使火焰前沿产生波纹。增加整体速度并因此增加湍流强度不会影响平均火焰前部位置,但是由于较高的湍流,火焰前部会越来越波纹化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号