【24h】

WING GEOMETRY AND DYNAMIC SIMILARITY IN INSECT FLIGHT

机译:昆虫飞行中的机翼几何形状和动态相似性

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

The study of insect and bird flight has always been a curiosity, but it is yet to be described as plentifully as fixed wing aerodynamics. The United States military has expressed an interest in this topic, providing some institutions with funding. The main intention for this type of research is to develop small robots resembling insects or birds for use in exploration, surveillance and intelligence. While conceptually these applications could be accomplished with fixed-wing aircraft, there is a tremendous lack of stealth in these vehicles. The velocities associated with the required lift forces for small flapping-wing insect flights are significantly smaller than for insect-size fixed-wing aircraft. Therefore, it is more feasible and practical to aim for flapping wing flight. There have been studies in which wing beat frequencies of some birds are predicted as a function of mass and other physical characteristics (Pennycuick, 1996). Other studies such as Liu and Kawachi, 1998 have taken a more theoreticalumerical approach using a time accurate solution of the three-dimensional Navier-Stokes equations. A number of parameters such as power needed, power produced, mass supported, and others, have been determined for hovering flight of bumblebees and the hawkmoth manduca. In this study a scaled prototype is being built based on the physical characteristics of a hawkmoth manduca during hovering flight. It is reasonable that if a prototype is designed for hovering flight where the power requirements are highest, that it will sustain flight in other situations. The focus of this project is to analyze different wing geometries in a scaled model of a hawkmoth manduca, and see how these affect flight.
机译:对昆虫和鸟类飞行的研究一直以来都是一种好奇,但是至今还没有将其描述为固定翼的空气动力学。美国军方对此话题表示了兴趣,向一些机构提供了资金。这类研究的主要目的是开发类似于昆虫或鸟类的小型机器人,用于勘探,监视和情报。从概念上讲,这些应用可以用固定翼飞机完成,但这些车辆的隐身性非常缺乏。与小型扑翼昆虫飞行所需的升力相关的速度明显小于昆虫大小的固定翼飞机。因此,瞄准襟翼飞行更加可行和实用。有研究表明,某些鸟类的翅膀跳动频率被预测为质量和其他身体特征的函数(Pennycuick,1996)。其他研究,例如Liu和Kawachi,1998年,使用时间精确的三维Navier-Stokes方程解,采用了更为理论/数字的方法。确定了大黄蜂和鹰蛾的盘旋飞行所需的许多参数,例如所需的功率,产生的功率,支持的质量等。在这项研究中,根据on蛾在悬停飞行期间的物理特征,构建了比例缩放的原型。合理的是,如果将原型设计为功率要求最高的悬停飞行,它将在其他情况下保持飞行。该项目的重点是在鹰蛾的比例模型中分析不同的机翼几何形状,并观察它们如何影响飞行。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号