【24h】

INVESTIGATION OF POLYMER BASED MICRO HEAT PIPES FOR A FLEXIBLE SPACECRAFT RADIATOR

机译:柔性航天器用聚合物基微热管的研究

获取原文
获取原文并翻译 | 示例

摘要

In response to the space industry's pursuit of interplanetary travel and a continuous human presence in space, there is increasing focus on spacecraft that change configuration while in space. Flexible thermal radiators are being developed to accommodate various collapse and deployment mechanisms. An analytical model suggests that a lightweight polymeric material with imbedded micro heat pipe arrays can meet heat dissipation requirements while contributing less mass than competing flexible materials. The capillary pumping limit is evaluated as a function of operating temperature using two candidate working fluids. Using water, the maximum heat transport is 18 mW per channel at 140/160℃. The maximum heat transport using methanol is 2.2 mW at 120℃, an order-of magnitude difference. A thermal circuit model translates heat transport per channel into total radiator capacity as a function of source temperature and environmental sink temperature. Using water as the working fluid, the radiator capacity was shown to vary from 6.0 kW to 12.2 kW for source temperatures of 20℃ to 50℃. For source temperatures of 40℃ and higher, the capacity meets or exceeds the dissipation requirements of a reference spacecraft design. While evaluated, methanol is not recommended as a working fluid because its radiator capacity is two to three times lower than water. Although thermal system constraints place limits on the micro heat pipe operating range, design changes directed at alleviating capillary limitations should increase radiator capacity. Technical issues for further study include effects of film billowing, performance limitations related to vapor viscosity, working fluid diffusion, and chemical reactivity between case and working fluid. Compared to a competing graphite fiber weave, the polymeric material has an effective conductivity over ten tunes higher. Its area power density (in kW/m~2) is 18% to 60% lower than the graphite weave, but its mass power density (in kW/kg) is several times higher. Greater flexibility and lower weight also make it more amenable to structural integration. Recently developed space-stable polymers offer resistance to harsh temperature and radiation environments, helping to clear the path toward a more extensive use of polymers within the space industry.
机译:为了响应航天工业对行星际旅行的追求以及人类在太空中的持续存在,人们越来越关注在太空中改变构造的航天器。正在开发柔性散热器以适应各种塌陷和展开机制。分析模型表明,具有嵌入式微型热管阵列的轻质聚合物材料可以满足散热要求,同时所产生的质量比竞争性柔性材料要小。使用两种候选工作流体,根据工作温度评估毛细管泵送极限。使用水,在140/160℃时,每个通道的最大热传递为18 mW。在120℃下,使用甲醇的最大热传递为2.2 mW,相差一个数量级。热电路模型将每个通道的热传输转换为总辐射器容量,作为源温度和环境沉温度的函数。使用水作为工作流体,在源温度为20℃至50℃的情况下,散热器的容量显示为6.0 kW至12.2 kW。对于40℃或更高的源温度,其容量可以达到或超过参考航天器设计的耗散要求。经过评估,不建议将甲醇用作工作流体,因为其散热器容量比水低两到三倍。尽管热系统的限制限制了微型热管的工作范围,但旨在减轻毛细管限制的设计更改应会增加散热器的容量。有待进一步研究的技术问题包括薄膜滚滚的影响,与蒸汽粘度有关的性能限制,工作流体的扩散以及壳体与工作流体之间的化学反应性。与竞争的石墨纤维编织相比,聚合材料的有效电导率高出十倍。其面积功率密度(单位为kW / m〜2)比石墨编织低18%至60%,但其质量功率密度(单位为kW / kg)则高出几倍。更大的灵活性和更轻的重量也使其更易于进行结构集成。最近开发的空间稳定聚合物可抵抗恶劣的温度和辐射环境,有助于扫清在太空工业中更广泛使用聚合物的途径。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号