【24h】

Fluorite-structured Mg-based Hydrogen Storage Materials:A Challenging Route towards the Future Hydrogen Economy

机译:萤石结构的镁基储氢材料:通往未来氢经济的挑战之路

获取原文
获取原文并翻译 | 示例

摘要

1.Introduction It has been identified that hydrogen storage is one of the key drivers, enabling the future hydrogen economy. High-energy density materials will play a dominant role in future gas phase and electrochemical devices, such as Fuel Cells and rechargeable NiMH batteries. Significantly higher gravimetric storage capacities are, however, required to accomplish the necessary breakthroughs. It has recently been shown that more than 6.5 wt.% of hydrogen can be electrochemically absorbed and desorbed at high rates at room temperature in fluorite-structured Mg-compounds [1-3]. It has been argued that, in contrast to the well-known rutile-structured Mg-alloys these materials have a much more open crystal structure, facilitating fast hydrogen transport[4]. In this contribution the electrochemical [1-4] and crystallographic[5,6] aspects of this new class of hydride-forming materials will be addressed. Apart from the storage capacity, one of the most important characteristics is the absorption/desorption isotherm. Both a thermodynamic and kinetic modelling approach will be presented, allowing to accurate simulate these complex (de)hydrogenation processes[7-9].
机译:1.引言已经确定储氢是推动未来氢经济的关键驱动因素之一。高能量密度材料将在未来的气相和电化学装置(例如燃料电池和镍氢可充电电池)中起主导作用。但是,要实现必要的突破,需要更大的重量存储容量。最近显示,在萤石结构的Mg化合物[1-3]中,在室温下可以高速率电化学吸附和解吸超过6.5 wt。%的氢。有人认为,与众所周知的金红石结构镁合金相比,这些材料的晶体结构更为开放,有利于氢的快速运输[4]。在这一贡献中,将解决这类新型氢化物形成材料的电化学[1-4]和晶体学[5,6]方面。除存储容量外,最重要的特性之一是吸收/解吸等温线。将介绍热力学和动力学建模方法,从而可以精确模拟这些复杂的(脱氢)加氢过程[7-9]。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号