首页> 外文会议>14th International Conference on Nuclear Engineering 2006(ICONE14) vol.3 >GOALS, REQUIREMENTS, AND DESIGN IMPLICATIONS FOR THE ADVANCED HIGH-TEMPERATURE REACTOR
【24h】

GOALS, REQUIREMENTS, AND DESIGN IMPLICATIONS FOR THE ADVANCED HIGH-TEMPERATURE REACTOR

机译:先进高温反应器的目标,要求和设计意义

获取原文
获取原文并翻译 | 示例

摘要

The Advanced High-Temperature Reactor (AHTR), also called the liquid-salt-cooled Very High-Temperature Reactor (LS-VHTR), is a new reactor concept that has been under development for several years. The AHTR combines four existing technologies to create a new reactor option: graphite-matrix, coated-particle fuels (the same fuel as used in high-temperature gas-cooled reactors); a liquid-fluoride-salt coolant with a boiling point near 1400℃; plant designs and decay-heat-removal safety systems similar to those in sodium-cooled fast reactors; and a helium or nitrogen Brayton power cycle. This paper describes the basis for the selection of goals and requirements, the preliminary goals and requirements, and some of the design implications. For electricity production, the draft AHTR goals include peak coolant temperatures between 700 and 800℃ and a maximum power output of about 4000 MW(t), for an electrical output of ~2000 MW(e). The electrical output matches that expected for a large advanced light-water reactor (ALWR) built in 2025. Plant capital cost per kilowatt electric is to be at least one-third less than those for ALWRs with the long-term potential to significantly exceed this goal. For hydrogen production, the peak temperatures may be as high as 950℃, with a power output of 2400 MW(t). The safety goals are to equal or surpass those of the modular high-temperature gas-cooled reactor with a beyond-design-basis accident capability to withstand large system and structural failures (vessel failure, etc.) without significant fuel failure or off-site radionuclide releases. These safety goals may eliminate the technical need for evacuation zones and reduce security requirements and significantly exceed the safety goals of ALWRs. The plant design should enable economic dry cooling to make possible wider nuclear-power-plant siting options. Uranium consumption is to be less than that for a LWR, with major improvements in repository performance and nonproliferation characteristics.
机译:先进的高温反应堆(AHTR),也称为液盐冷却超高温反应堆(LS-VHTR),是已经开发了几年的新反应堆概念。 AHTR结合了四种现有技术来创建新的反应堆选项:石墨基,涂层颗粒燃料(与高温气冷反应堆中使用的燃料相同);沸点接近1400℃的液态氟盐冷却剂;与钠冷快堆相似的设备设计和衰减除热安全系统;以及氦气或氮气布雷顿动力循环。本文介绍了选择目标和要求的基础,初步目标和要求以及一些设计含义。对于电力生产,AHTR的目标草案包括冷却剂的最高温度在700至800℃之间,最大功率输出约为4000 MW(t),而电输出约为2000 MW(e)。电力输出与2025年建成的大型先进轻水反应堆(ALWR)的预期输出相符。每千瓦电力的工厂资本成本至少比长期潜力显着超过该水平的ALWR降低三分之一目标。对于制氢,峰值温度可能高达950℃,输出功率为2400 MW(t)。安全目标是等于或超过模块化高温气冷堆的安全性,具有超出设计基准的事故能力,以承受较大的系统和结构故障(容器故障等),而不会发生重大的燃料故障或异地事故放射性核素释放。这些安全目标可以消除对疏散区的技术需求,降低安全要求,并大大超过ALWR的安全目标。电厂的设计应能实现经济的干式冷却,从而使核电厂选址的可能性更大。铀的消耗量应少于轻水堆的铀消耗量,并且在储存库性能和防扩散特性方面都有重大改进。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号