首页> 外文会议>13th World conference on earthquake engineering (WCEE) >SEISMIC BEHAVIOR OF RCS BEAM-COLUMN-SLABSUBASSEMBLIES DESIGNED FOLLOWING A CONNECTIONDEFORMATION-BASED CAPACITY DESIGN APPROACH
【24h】

SEISMIC BEHAVIOR OF RCS BEAM-COLUMN-SLABSUBASSEMBLIES DESIGNED FOLLOWING A CONNECTIONDEFORMATION-BASED CAPACITY DESIGN APPROACH

机译:遵循基于连接变形的能力设计方法而设计的RCS梁柱-平板子组合件的抗震性能

获取原文
获取原文并翻译 | 示例

摘要

This paper presents test results for four RCS subassemblies consisting of Reinforced Concrete (RC)rncolumns and composite Steel (S) beams with reinforced concrete slab, under displacement reversals. Thernspecimens were designed following a strong column-weak beam criterion, with the connection regionsrndesigned using a deformation-based capacity design procedure to limit joint deformations and damage.rnTwo simple RCS joint details, consisting of either overlapping U-shaped stirrups passing through the steelrnbeam web or steel band plates wrapping around the RC column just above and below the steel beamrnflanges were used to provide joint confinement. The performance of the specimens was evaluated in termsrnof lateral load vs. story drift response, beam and joint deformations, energy dissipation capacity, and storyrndrift contributions from different structural components. Test results indicated satisfactory seismicrnperformance of RCS subassemblies under large lateral displacement reversals. To evaluate the effect ofrnjoint deformations on RCS system behavior, dynamic analyses of a six-story RCS frame system underrnvarious ground motion records were conducted. In one of the three RCS moment-resisting framesrnanalyzed, the composite joint regions were modeled as rigid joint panels. In the other two frames, the jointrnregions were modeled as flexible joint panels designed following a deformation-based design approach,rnwhich would limit the maximum joint shear deformations to approximately 1.2% and 0.5%. Results fromrninelastic dynamic analyses show that joint deformations may have a significant effect on maximum storyrndrift, and thus joint flexibility shall not be neglected in analysis of RCS frames. In addition, different jointrndesign philosophies may affect the inelastic deformation demand imposed on beams and columns.
机译:本文介绍了四个RCS子组件的测试结果,这些子组件由钢筋混凝土(RC)柱和复合钢(S)横梁与钢筋混凝土板组成,且位移反向。遵循严格的柱弱梁准则设计试样,并使用基于变形的能力设计程序来设计连接区域,以限制节点变形和损伤。两个简单的RCS节点细节,包括重叠的U形箍筋穿过钢梁腹板或在钢梁法兰的上方和下方围绕RC柱缠绕的钢带板用于限制接缝。样品的性能通过侧向载荷与层间位移响应,梁和接头变形,能量耗散能力以及来自不同结构组件的层间漂移的贡献进行评估。测试结果表明,RCS组件在大的横向位移反向情况下具有令人满意的抗震性能。为了评估关节变形对RCS系统行为的影响,对六层RCS框架系统在各种地面运动记录下的动力进行了分析。在分析的三个RCS抗力矩框架之一中,将复合节点区域建模为刚性节点面板。在其他两个框架中,将接缝区域建模为按照基于变形的设计方法设计的柔性接缝面板,这会将最大接缝剪切变形限制在大约1.2%和0.5%。弹塑性动力学分析的结果表明,接头变形可能对最大动荡有很大影响,因此在RCS框架分析中不得忽略接头的挠性。此外,不同的接缝设计理念可能会影响施加在梁和柱上的非弹性变形需求。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号