【24h】

MOLECULAR OXYGEN (O_2): REACTIVITY AND LUMINESCENCE

机译:分子氧(O_2):反应性和发光度

获取原文
获取原文并翻译 | 示例

摘要

Luminescence occurs when an electron relaxes from an excited state by photon emission. Electronic excitations require relatively high energies. Emission of a blue photon requires about 60 kcalmol~(-1) of energy. This quantity of energy is significantly greater than the energies liberated in most biochemical reactions. For example, hydrolysis of ATP to ADP yields about 7 kcalmol. Essentially all chemiluminescence (CL) and bioluminescence (BL) phenomena result from O_2-dependent reactions, i.e., dioxygenations and mixed function oxygenations. These reactions are combustions and O_2 is incorporated into the final product. The great electronegativity of oxygen promises reaction exergonicities sufficient for electronic excitation. Compare the reaction of O_2 and chlorine (C1_2) with an organic substrate such as ethylene. Reaction with chlorine (Cl_2) yields about -51 kcal'mol~(-1) of free energy while reaction with O_2 yields about -87 kcalmol~(-1). C1_2 is a potent reactive agent that is biologically lethal in very low concentration, yet we live in an environment that is about 21 % O_2- Chlorination reactions are highly exergonic, yet oxygenation reactions are significantly more exergonic. Chlorine reactivity is spontaneous, but direct oxygenation is not. What protects against spontaneous combustion? Although O_2 is required for CL and BL, the pathway to oxygenation is indirect. The non-radical pathway to luminol luminescence requires dioxygenation, but reaction with O_2 is not direct. Luminol is first dehydrogenated to its diazaquinone by removal of two reducing equivalents, i.e., two electrons (2e~-) and two protons (2H~+). Dehydrogenation is a type of oxidation that does not require the direct participation of O_2. Reducing O_2 by two equivalents generates hydrogen peroxide (H_2O_2). The luminol diazaquinone reacts with H_2O_2 to yield a dioxygenated product that rearranges to electronically excited aminophthalate, and this excited state relaxes by photon (hv) emission. The net reaction is a simply dioxygenation, luminol + O_2 → aminophthalate + N_2 + hv, but luminol reaction with O_2 is indirect. Why are exchanges of reducing equivalents required to ultimately achieve dioxygenation? What limits the direct reactivity of O_2? The answers to these questions can be found in boson-fermion symmetry considerations. The symmetry-based approach described herein is straightforward and consistent with the law of parsimony. Where necessary, fundamental quantum mechanical principles are developed to provide appropriate background material.
机译:当电子通过光子发射从激发态弛豫时,就会发生发光。电子激励需要相对较高的能量。蓝色光子的发射大约需要60 kcalmol〜(-1)的能量。该能量明显大于大多数生化反应中释放的能量。例如,将ATP水解成ADP产生约7kcalmol。基本上所有化学发光(CL)和生物发光(BL)现象都是由O_2依赖性反应产生的,即双加氧和混合功能氧合。这些反应是燃烧,O_2被掺入最终产物中。氧的巨大电负性保证了足以激发电子的反应能值。比较O_2和氯(C1_2)与有机底物(例如乙烯)的反应。与氯(Cl_2)反应产生约-51kcalmol〜(-1)的自由能,而与O_2反应产生约-87kcalmol〜(-1)。 C1_2是一种有效的反应剂,浓度极低,具有生物致命性,但我们生活在大约21%O_2的环境中。氯化反应的能量消耗很高,而氧合反应的能量消耗却更大。氯的反应性是自发的,但不是直接的氧合。什么能防止自燃?尽管CL和BL需要O_2,但氧化途径是间接的。鲁米诺发光的非自由基途径需要双氧合,但与O_2的反应不是直接的。首先通过除去两个还原当量,即两个电子(2e〜-)和两个质子(2H〜+),将鲁米诺脱氢成二氮醌。脱氢是一种不需要O_2直接参与的氧化反应。将O_2还原两个当量会生成过氧化氢(H_2O_2)。鲁米诺二氮杂醌与H_2O_2反应生成重排成电子激发的氨基邻苯二甲酸酯的双加氧产物,该激发态通过光子(hv)发射而松弛。净反应是简单的双加氧,鲁米诺+ O_2→氨基邻苯二甲酸酯+ N_2 + hv,但鲁米诺与O_2的反应是间接的。为什么需要进行还原性当量交换才能最终实现双加氧作用?什么限制了O_2的直接反应性?这些问题的答案可以在玻色子-费米子对称性考虑因素中找到。本文所述的基于对称性的方法是直接的,并且符合简约法则。必要时,发展基本的量子力学原理以提供适当的背景材料。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号