首页> 外文会议>11th international conference on energy sustainability: batteries and electrochemical energy storage ... >SIMULATION OF TETHERED UNDERWATER KITES MOVING IN THREE DIMENSIONS FOR POWER GENERATION
【24h】

SIMULATION OF TETHERED UNDERWATER KITES MOVING IN THREE DIMENSIONS FOR POWER GENERATION

机译:三维旋转的水下风箱的发电模拟

获取原文
获取原文并翻译 | 示例

摘要

In this paper, a numerical simulation of tether undersea kites (TUSK) used for power generation is undertaken. The effect of varying key design parameters in these systems is studied. TUSK systems consist of a rigid-winged kite, or glider, moving in an ocean current. One proposed TUSK concept uses a tethered kite which is connected by a flexible tether to a support structure with a generator on a surface buoy. The numerical simulation models the flow field in a three-dimensional domain near the rigid undersea kite wing by solving the full Navier-Stokes equations. A moving computational domain method is used to reduce the computational run times. A second-order corrector-predictor method, along with Open Multi-Processing (OpenMP), is employed to solve the flow equations. In order to track the rigid kite, which is a rectangular planform wing with a NACA 0021 airfoil, an immersed boundary method is used. The tension force in the elastic tether is modeled by a simple Hooke's law, and the effect of tether damping is added. PID control methods are used to adjust the kite pitch, roll and yaw angles during power (tether reel-out) and retraction (reel-in) phases to obtain the desired kite trajectories. During the reel-out phase the kite moves in successive cross-current motions in a figure-8 pattern, the tether length increases and power is generated. During reel-in the kite motion is along the tether, and kite hydrodynamic forces are reduced so that net positive power is produced. The effects of different key design parameters in TUSK systems, such as the ratio of tether to current velocity, and tether retraction velocity, are then further studied. System power output, kite trajectories, and vorticity flow fields for the kite are also determined.
机译:在本文中,进行了用于发电的系绳水下风筝(TUSK)的数值模拟。研究了在这些系统中改变关键设计参数的影响。 TUSK系统由在海流中移动的刚性翼风筝或滑翔机组成。一个提出的TUSK概念使用了一种束缚的风筝,该束缚的风筝通过一个柔性的束缚带连接到一个带有浮标上的发电机的支撑结构上。数值模拟通过求解完整的Navier-Stokes方程,对刚性海底风筝翼附近的三维域内的流场进行建模。移动计算域方法用于减少计算运行时间。采用二阶校正器-预测器方法以及开放式多处理(OpenMP)方法来求解流动方程。为了跟踪刚性风筝,它是一个带有NACA 0021机翼的矩形平面机翼,采用了浸入边界法。通过简单的胡克定律对弹性绳中的张力进行建模,并添加了绳阻尼的效果。 PID控制方法用于在功率(系绳收卷)和缩回(收卷)阶段调整风筝的俯仰,侧倾和偏航角,以获得所需的风筝轨迹。在放卷阶段,风筝以连续的横流运动以8字形运动,系绳长度增加并且产生动力。在放卷过程中,风筝沿系绳运动,风筝的水动力减小,从而产生净正动力。然后进一步研究了TUSK系统中不同关键设计参数的影响,例如系链与当前速度的比率以及系链回缩速度。还确定了系统功率输出,风筝轨迹和风筝的涡流场。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号