首页> 外文会议>11th Ausimm mill operators' conference 2012 : Milling into the future-the challenge continues >A Method of Calculating Autogenous/ Semi-Autogenous Grinding Mill Specific Energies Using a Combination of Bond Work Indices and Julius Kruttschnitt Parameters, then Applying Efficiency Factors
【24h】

A Method of Calculating Autogenous/ Semi-Autogenous Grinding Mill Specific Energies Using a Combination of Bond Work Indices and Julius Kruttschnitt Parameters, then Applying Efficiency Factors

机译:一种结合了粘结功指标和Julius Kruttschnitt参数然后计算效率因子的自生/半自生磨机比能量的计算方法

获取原文
获取原文并翻译 | 示例

摘要

Since the days of mandatory high cost pilot plant testing in 6 ft ×2 ft SAG mills autogenous griding/semi-autogenous grinding (AG/SAG), mill specific energy is now calculated by various empirical formulae and pilot testing carried out in small laboratory mills. Barratt (1989) described a method using Bond Indices than adding a single factor of 1.25 to arrive at the AG/SAG specific energy. In 1991 the Canadians developed the SAGPower Index (SPI), test using 2 kg of material in a 300 mm diameter mill. This test has been further developed by Starkey, Hindstrom and Orser (2006). This test now includes a Bond Ball mill work index test. The Macpherson test is still being offered by some testing facilities. This dry test requires at least 180 kg of material. Morrell (2004) formulated an AG/SAG specific energy generator based on a drop weight index Value (DWi). This DWi value is related to the Ab parameter and the material specific gravity. Morrell reconfigured the Bond's Third Theory formula to cause extra power requirements to be inputed. This technique incorporates the material specific gravity (SG). The AG/SAG specific energy values produced using this method are susceptible to higher values of crushing and rod mill work indices. This paper offered describes a more simple method to generate AG/SAG specific energies. This programme incorporates Bond work indices, the JKMRC parameter Ab measuring impact breakage and the parameter ta measuring the abrasion rate, then employs a series of efficiency values nominated for each transition size (AG/SAG T80). These efficiency values have been compiled over the years from actual operating plants and documented reports.
机译:自从在6英尺×2英尺SAG轧机上强制性进行高成本的中试工厂测试的日子开始,自生网格/半自生研磨(AG / SAG)以来,现在通过各种经验公式和在小型实验室工厂中进行的中试计算来计算出工厂的比能。 。 Barratt(1989)描述了一种使用债券指数的方法,而不是增加1.25的单个因数以获得AG / SAG比能量。 1991年,加拿大人开发了SAGPower指数(SPI),在直径300毫米的轧机中使用2千克材料进行了测试。 Starkey,Hindstrom和Orser(2006)进一步开发了该测试。该测试现在包括邦德球磨机工作指数测试。某些测试机构仍在提供Macpherson测试。此干式测试至少需要180千克的材料。 Morrell(2004)根据液滴重量指数值(DWi)制定了AG / SAG特定能量发生器。该DWi值与Ab参数和材料比重有关。 Morrell重新配置了Bond的Third Theory公式,以输入额外的功率要求。该技术结合了材料比重(SG)。使用这种方法产生的AG / SAG比能值容易受到较高的破碎值和棒磨机工作指数的影响。提供的本文描述了一种生成AG / SAG比能量的更简单方法。该程序结合了邦定工作指数,用于测量冲击破坏的JKMRC参数Ab和用于测量磨损率的参数ta,然后采用针对每种过渡尺寸(AG / SAG T80)提名的一系列效率值。这些效率值是多年来根据实际运营工厂和书面报告汇总而成的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号