首页> 外文会议>10th EMAS regional workshop on electron probe microanalysis of materials today : Practical aspects >DIRECT OBSERVATION OF FERROELECTRIC DOMAIN WALL MOTION UNDER MECHANICAL STRESS IN THE ESEM
【24h】

DIRECT OBSERVATION OF FERROELECTRIC DOMAIN WALL MOTION UNDER MECHANICAL STRESS IN THE ESEM

机译:ESEM中机械应力作用下铁电域壁运动的直接观测

获取原文
获取原文并翻译 | 示例

摘要

A domain structure within single crystals, polycrystalline ceramics or thin films is a commonly observed feature of ferroic materials (ferroelectrics, ferromagnetics and ferroelastics) below a typical transition temperature usually referred to as Curie point. The formation of domains is a result of the minimisation of electric or magnetic stray field energy and/or elastic energy. Ferroelectric materials respond to mechanical stress with a polarisation. This polarisation consists of an intrinsic part due to compression of the unit cell and an extrinsic part due to domain wall motion. Such a response can be observed in piezoelectric ceramics and is described as mechanical poling. The mechanical behaviour is called ferroelastic effect. The direct observation of the domain wall motion under mechanical stress provides a tool for evaluating the extrinsic contribution to the materials with respect to reversible and irreversible parts. The samples were imaged by orientation contrast, an easy and quick method for investigating the microstructure of ceramic materials, enabling the observation of respective changes during in situ experiments. Crystal orientation contrast caused by orientation anisotropy of backscattered electrons can generate images in which grains of different orientations in polycrystalline material have different grey levels. Even ferroelectric domains can be observed because of their differing polarisation axes giving rise to twin boundaries. As test sample barium titanate, BaTiO_3, a ferroelectric material with a Curie temperature of 127 ℃ was investigated. From such sintered pellets rectangular blocks of 7×7×5 mm~3 were cut and one of the 7×7 mm~2 faces was polished first with diamond paste. Due to the very low information depth of about 5-50 nm of the signal, a final polishing step using colloidal silica is necessary to get a fully distortion free surface. In situ investigations were carried out in an ESEM equipped with a tensile stage using the compression mode. Domain wall motion was observed at a stress exceeding 33 MPa resulting in mechanical poling.
机译:在通常称为居里点的典型转变温度以下,铁晶体材料(铁电,铁磁和铁弹性)通常观察到单晶,多晶陶瓷或薄膜中的畴结构。域的形成是电或磁场杂散场能量和/或弹性能最小化的结果。铁电材料对机械应力产生极化作用。这种极化由因晶胞压缩引起的本征部分和由畴壁运动引起的非本征部分组成。这种响应可以在压电陶瓷中观察到,并被称为机械极化。力学行为称为铁弹性效应。在机械应力作用下对畴壁运动的直接观察提供了一种工具,用于评估材料对可逆和不可逆部件的外在影响。通过取向对比对样品进行成像,取向对比是研究陶瓷材料微观结构的一种简便快捷的方法,可以观察到原位实验过程中的各个变化。由反向散射电子的取向各向异性引起的晶体取向对比可以生成图像,其中多晶材料中不同取向的晶粒具有不同的灰度级。甚至可以观察到铁电畴,因为它们的极化轴不同,从而产生了孪晶边界。研究了居里温度为127℃的铁电材料钛酸钡BaTiO_3。从这些烧结的粒料中切出7×7×5mm 2的矩形块,并首先用金刚石糊剂抛光7×7mm 2的一个面。由于信号的大约5-50 nm的信息深度非常低,因此使用胶体二氧化硅进行的最终抛光步骤对于获得完全无畸变的表面是必要的。使用压缩模式在配有拉伸台的ESEM中进​​行原位研究。在超过33 MPa的应力下观察到畴壁运动,从而导致机械极化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号