首页> 外文OA文献 >A New Model on Cation Distribution in Cation-Disordered Li1+xTM1-xO2 Cathodes
【2h】

A New Model on Cation Distribution in Cation-Disordered Li1+xTM1-xO2 Cathodes

机译:在阳离子无序为Li + xTm1-xO2的阴极阳离子分布的新模型

摘要

The search for new materials that could improve the energy density of Li-ion batteries (LIB) is one of today’s most challenging issues. Recently, cation-disordered lithium-excess metal oxides have emerged as a promising new class of cathode materials for LIB, due to their high reversible capacities and nice structural stability. However, a full structural model of the Li-transition metal (TM) sharing sublattice and the origin of short range ordering (SRO) of cation ions requires further investigation. In this work, we put forward a Monte Carlo strategy of building a cation-disordered rocksalt material supercell model. The cation ions of Li1.0Ti0.5Ni0.5O2 (LTNO) are placed at the FCC sublattice sites with the constraint of Pauling’s electroneutrality rule, instead of a random way. This constraint causes the Li-Ti and Ni-Ni clustering (the cation short range ordering). Based on this model, we discussed the relationship between the short range ordering, the local distorting, the theoretic capacity and the order-disorder strengths. A unified understanding of these factors in cation-disordered materials may enable a better design of disordered-electrode materials with high capacity and high energy density.

著录项

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号