首页> 外文期刊>Global change biology >Using model-data fusion to interpret past trends, and quantify uncertainties in future projections, of terrestrial ecosystem carbon cycling.
【24h】

Using model-data fusion to interpret past trends, and quantify uncertainties in future projections, of terrestrial ecosystem carbon cycling.

机译:使用模型数据融合来解释陆地生态系统碳循环的过去趋势,并量化未来预测中的不确定性。

获取原文
获取原文并翻译 | 示例
           

摘要

Uncertainties in model projections of carbon cycling in terrestrial ecosystems stem from inaccurate parameterization of incorporated processes (endogenous uncertainties) and processes or drivers that are not accounted for by the model (exogenous uncertainties). Here, we assess endogenous and exogenous uncertainties using a model-data fusion framework benchmarked with an artificial neural network (ANN). We used 18 years of eddy-covariance carbon flux data from the Harvard forest, where ecosystem carbon uptake has doubled over the measurement period, along with 15 ancillary ecological data sets relative to the carbon cycle. We test the ability of combinations of diverse data to constrain projections of a process-based carbon cycle model, both against the measured decadal trend and under future long-term climate change. The use of high-frequency eddy-covariance data alone is shown to be insufficient to constrain model projections at the annual or longer time step. Future projections of carbon cycling under climate change in particular are shown to be highly dependent on the data used to constrain the model. Endogenous uncertainties in long-term model projections of future carbon stocks and fluxes were greatly reduced by the use of aggregated flux budgets in conjunction with ancillary data sets. The data-informed model, however, poorly reproduced interannual variability in net ecosystem carbon exchange and biomass increments and did not reproduce the long-term trend. Furthermore, we use the model-data fusion framework, and the ANN, to show that the long-term doubling of the rate of carbon uptake at Harvard forest cannot be explained by meteorological drivers, and is driven by changes during the growing season. By integrating all available data with the model-data fusion framework, we show that the observed trend can only be reproduced with temporal changes in model parameters. Together, the results show that exogenous uncertainty dominates uncertainty in future projections from a data-informed process-based model.
机译:陆地生态系统中碳循环的模型预测的不确定性源于合并过程的参数化不准确(内生不确定性)和模型未解释的过程或驱动因素(外源不确定性)。在这里,我们使用以人工神经网络(ANN)为基准的模型数据融合框架评估内源性和外源性不确定性。我们使用了来自哈佛森林的18年的涡度-协方差碳通量数据,该数据在整个测量期内使生态系统的碳吸收量增加了一倍,并提供了相对于碳循环的15个辅助生态数据集。我们针对测得的年代际趋势和未来的长期气候变化,测试了各种数据组合约束基于过程的碳循环模型的预测的能力。结果表明,仅使用高频涡动-协方差数据不足以在每年或更长时间的步骤上约束模型预测。特别是在气候变化下,碳循环的未来预测高度依赖于用于约束该模型的数据。通过使用总通量预算和辅助数据集,可以大大减少未来碳储量和通量的长期模型预测中的内生不确定性。但是,以数据为依据的模型无法很好地再现净生态系统碳交换和生物量增量的年际变化,也无法再现长期趋势。此外,我们使用模型数据融合框架和人工神经网络来表明,哈佛森林碳吸收率的长期翻倍不能由气象驱动因素来解释,而是受生长季节变化的驱动。通过将所有可用数据与模型数据融合框架集成在一起,我们显示出观察到的趋势只能随模型参数的时间变化而再现。总之,结果表明,基于数据知悉的基于过程的模型,外源不确定性主导着未来预测的不确定性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号