...
首页> 外文期刊>Earth System Dynamics >Decomposing uncertainties in the future terrestrial carbon budget associated with emission scenarios, climate projections, and ecosystem simulations using the ISI-MIP results
【24h】

Decomposing uncertainties in the future terrestrial carbon budget associated with emission scenarios, climate projections, and ecosystem simulations using the ISI-MIP results

机译:使用ISI-MIP结果分解与排放情景,气候预测和生态系统模拟相关的未来陆地碳预算中的不确定性

获取原文
           

摘要

We examined the changes to global net primary production (NPP), vegetationbiomass carbon (VegC), and soil organic carbon (SOC) estimated by six globalvegetation models (GVMs) obtained from the Inter-Sectoral Impact ModelIntercomparison Project. Simulation results were obtained using fiveglobal climate models (GCMs) forced with four representative concentrationpathway (RCP) scenarios. To clarify which component (i.e., emissionscenarios, climate projections, or global vegetation models) contributes themost to uncertainties in projected global terrestrial C cycling by 2100,analysis of variance (ANOVA) and wavelet clustering were applied to 70projected simulation sets. At the end of the simulation period, changes fromthe year 2000 in all three variables varied considerably from net negative topositive values. ANOVA revealed that the main sources of uncertainty aredifferent among variables and depend on the projection period. We determinedthat in the global VegC and SOC projections, GVMs are the main influence onuncertainties (60 % and 90 %, respectively) rather thanclimate-driving scenarios (RCPs and GCMs). Moreover, the divergence of changes invegetation carbon residence times is dominated by GVM uncertainty,particularly in the latter half of the 21st century. In addition, we foundthat the contribution of each uncertainty source is spatiotemporallyheterogeneous and it differs among the GVM variables. The dominant uncertaintysource for changes in NPP and VegC varies along the climatic gradient. Thecontribution of GVM to the uncertainty decreases as the climate divisionbecomes cooler (from ca. 80 % in the equatorial division to40 % in the snow division). Our results suggest that to assessclimate change impacts on global ecosystem C cycling among each RCP scenario,the long-term C dynamics within the ecosystems (i.e., vegetation turnover andsoil decomposition) are more critical factors than photosyntheticprocesses. The different trends in the contribution of uncertainty sources in eachvariable among climate divisions indicate that improvement of GVMs based onclimate division or biome type will be effective. On the other hand, in dryregions, GCMs are the dominant uncertainty source in climate impactassessments of vegetation and soil C dynamics.
机译:我们研究了通过从部门间影响模型相互比较项目获得的六个全球植被模型(GVM)估算的全球净初级生产(NPP),植被生物量碳(VegC)和土壤有机碳(SOC)的变化。使用五个具有四个代表性浓度路径(RCP)情景的全球气候模型(GCM)获得了模拟结果。为了弄清哪个成分(例如排放情景,气候预测或全球植被模型)对预测的全球陆地C循环的不确定性影响最大,到2100年,将方差分析(ANOVA)和小波聚类应用于70个预测的模拟集。在模拟期结束时,从净负值到正值,所有三个变量自2000年以来的变化都很大。方差分析显示不确定性的主要来源在变量之间是不同的,并且取决于预测周期。我们确定,在全球VegC和SOC预测中,GVM是不确定性的主要影响因素(分别为60%和90%),而不是气候驱动方案(RCP和GCM)。此外,植被碳滞留时间变化的差异主要由GVM不确定性决定,尤其是在21世纪下半叶。此外,我们发现每个不确定性源的贡献是时空异质的,并且在GVM变量之间存在差异。 NPP和VegC变化的主要不确定性源随气候梯度而变化。 GVM对不确定性的贡献随着气候分区的变冷而降低(从赤道分区的约80%降到雪分区的40%)。我们的结果表明,要评估每个RCP情景中气候变化对全球生态系统C循环的影响,生态系统内的长期C动态(即植被更新和土壤分解)比光合作用过程更为关键。气候分区中每个变量的不确定性源贡献的不同趋势表明,基于气候分区或生物群落类型的GVM改进将是有效的。另一方面,在干旱地区,GCMs是植被和土壤碳动态的气候影响评估中的主要不确定性来源。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号