...
首页> 外文期刊>Global change biology >Reconciling the optimal and empirical approaches to modelling stomatal conductance
【24h】

Reconciling the optimal and empirical approaches to modelling stomatal conductance

机译:调和气孔电导模型的最佳和经验方法

获取原文
获取原文并翻译 | 示例
           

摘要

Models of vegetation function are widely used to predict the effects of climate change on carbon, water and nutrient cycles of terrestrial ecosystems, and their feedbacks to climate. Stomatal conductance, the process that governs plant water use and carbon uptake, is fundamental to such models. In this paper, we reconcile two long-standing theories of stomatal conductance. The empirical approach, which is most commonly used in vegetation models, is phenomenological, based on experimental observations of stomatal behaviour in response to environmental conditions. The optimal approach is based on the theoretical argument that stomata should act to minimize the amount of water used per unit carbon gained. We reconcile these two approaches by showing that the theory of optimal stomatal conductance can be used to derive a model of stomatal conductance that is closely analogous to the empirical models. Consequently, we obtain a unified stomatal model which has a similar form to existing empirical models, but which now provides a theoretical interpretation for model parameter values. The key model parameter, g(1), is predicted to increase with growth temperature and with the marginal water cost of carbon gain. The new model is fitted to a range of datasets ranging from tropical to boreal trees. The parameter g(1) is shown to vary with growth temperature, as predicted, and also with plant functional type. The model is shown to correctly capture responses of stomatal conductance to changing atmospheric CO2, and thus can be used to test for stomatal acclimation to elevated CO2. The reconciliation of the optimal and empirical approaches to modelling stomatal conductance is important for global change biology because it provides a simple theoretical framework for analyzing, and simulating, the coupling between carbon and water cycles under environmental change.
机译:植被功能模型被广泛用于预测气候变化对陆地生态系统碳,水和养分循环的影响,以及它们对气候的反馈。气孔导度是控制植物水分利用和碳吸收的过程,是此类模型的基础。在本文中,我们调和了两个长期存在的气孔导度理论。在植被模型中最常使用的经验方法是现象学的,基于对环境条件做出响应的气孔行为的实验观察。最佳方法是基于理论上的论点,即气孔应起最大作用,以减少每单位碳获得的水量。我们通过证明最佳气孔导度理论可以用来推导与实证模型非常相似的气孔导度模型来调和这两种方法。因此,我们获得了一个统一的气孔模型,该模型的形式与现有的经验模型相似,但是现在为模型参数值提供了理论解释。预测关键模型参数g(1)将随着生长温度和碳获取的边际水成本而增加。新模型适用于从热带树木到北方树木的一系列数据集。如图所示,参数g(1)随生长温度而变化,并且随植物功能类型而变化。该模型显示可正确捕获气孔电导对大气CO2变化的响应,因此可用于测试气孔对升高的CO2的适应。气孔电导建模的最佳方法和经验方法的协调对全球变化生物学很重要,因为它为分析和模拟环境变化下碳与水循环之间的耦合提供了一个简单的理论框架。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号