...
首页> 外文期刊>Global change biology >13C and 15N in microarthropods reveal little response of Douglas-fir ecosystems to climate change
【24h】

13C and 15N in microarthropods reveal little response of Douglas-fir ecosystems to climate change

机译:微节肢动物中的13C和15N揭示道格拉斯冷杉生态系统对气候变化的反应很小

获取原文
获取原文并翻译 | 示例
           

摘要

Understanding ecosystem carbon (C) and nitrogen (N) cycling under global change requires experiments maintaining natural interactions among soil structure, soil communities, nutrient availability, and plant growth. In model Douglas-fir ecosystems maintained for five growing seasons, elevated temperature and carbon dioxide (CO2) increased photosynthesis and increased C storage belowground but not aboveground. We hypothesized that interactions between N cycling and C fluxes through two main groups of microbes, mycorrhizal fungi (symbiotic with plants) and saprotrophic fungi (free-living), mediated ecosystem C storage. To quantify proportions of mycorrhizal and saprotrophic fungi, we measured stable isotopes in fungivorous microarthropods that efficiently censused the fungal community. Fungivorous microarthropods consumed on average 35% mycorrhizal fungi and 65% saprotrophic fungi. Elevated temperature decreased C flux through mycorrhizal fungi by 7%, whereas elevated CO2 increased it by 4%. The dietary proportion of mycorrhizal fungi correlated across treatments with total plant biomass (n=4, r2=0.96, P=0.021), but not with root biomass. This suggests that belowground allocation increased with increasing plant biomass, but that mycorrhizal fungi were stronger sinks for recent photosynthate than roots. Low N content of needles (0.8-1.1%) and A horizon soil (0.11%) coupled with high C:N ratios of A horizon soil (25-26) and litter (36-48) indicated severe N limitation. Elevated temperature treatments increased the saprotrophic decomposition of litter and lowered litter C:N ratios. Because of low N availability of this litter, its decomposition presumably increased N immobilization belowground, thereby restricting soil N availability for both mycorrhizal fungi and plant growth. Although increased photosynthesis with elevated CO2 increased allocation of C to ectomycorrhizal fungi, it did not benefit plant N status. Most N for plants and soil storage was derived from litter decomposition. N sequestration by mycorrhizal fungi and limited N release during litter decomposition by saprotrophic fungi restricted N supply to plants, thereby constraining plant growth response to the different treatments..
机译:要了解全球变化下的生态系统碳(C)和氮(N)循环,需要进行实验,以保持土壤结构,土壤群落,养分利用率和植物生长之间的自然相互作用。在道格拉斯冷杉模型中,生态系统维持了五个生长季节,高温和二氧化碳(CO2)增强了光合作用,并增加了地下而非地下的碳储量。我们假设N循环和C通量之间的相互作用是通过两个主要的微生物组:菌根真菌(与植物共生)和腐生真菌(自由生活)介导的生态系统C储存。为了量化菌根和腐生真菌的比例,我们测量了能有效普查真菌群落的真菌性节肢动物中稳定的同位素。真菌性节肢动物平均消耗35%的菌根真菌和65%的腐生真菌。温度升高会使通过菌根真菌的C通量减少7%,而CO2升高则将其增加4%。日粮中菌根真菌的日粮比例与植物总生物量相关(n = 4,r2 = 0.96,P = 0.021),而与根生物量无关。这表明地下分配随着植物生物量的增加而增加,但菌根真菌比最近的根更强。针叶(0.8-1.1%)和地平线土壤(0.11%)的低N含量,以及地平线土壤(25-26)和垫料(36-48)的高C:N比表明严重的N限制。升高的温度处理增加了凋落物的腐生分解并降低了凋落物的C:N比。由于该垫料的氮素利用率低,其分解可能会增加地下的氮素固定性,从而限制菌根真菌和植物生长的土壤氮素利用率。尽管光合作用的增加和二氧化碳含量的增加增加了碳在外生菌根真菌中的分配,但这并没有增加植物的氮素状况。植物和土壤储藏中的大多数氮均来自凋落物分解。菌根真菌对氮的隔离和腐养菌在凋落物分解过程中氮的释放受到限制,从而限制了植物对氮的供应,从而限制了植物对不同处理方法的生长响应。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号