...
【24h】

The deep carbon cycle and melting in Earth's interior

机译:深度的碳循环和地球内部的融化

获取原文
获取原文并翻译 | 示例
           

摘要

Carbon geochemistry of mantle-derived samples suggests that the fluxes and reservoir sizes associated with deep cycle are in the order of 10~(12-13)gC/yr and 10~(22-23)g C, respectively. This deep cycle is responsible for the billion year-scale evolution of the terrestrial carbon reservoirs. The petrology of deep storage modulates the long-term evolution and distribution of terrestrial carbon. Unlike water, which in most of the Earth's mantle is held in nominally anhydrous silicates, carbon is stored in accessory phases. The accessory phase of interest, with increasing depth, typically changes from fluids/melts→calcite/dolomite→magnesite→diamond/Fe-rich alloy/Fe-metal carbide, assuming that the mass balance and oxidation state are buffered solely by silicates. If, however, carbon is sufficiently abundant, it may reside as carbonate even in the deep mantle. If Earth's deep mantle is Fe-metal saturated, carbon storage in metal alloy and as metal carbide cannot be avoided for depleted and enriched domains, respectively. Carbon ingassing to the interior is aided by modern subduction of the carbonated oceanic lithosphere, whereas outgassing from the mantle is controlled by decompression melting of carbonated mantle. Carbonated melting at &300km depth or redox melting of diamond-bearing or metal-bearing mantle at somewhat shallower depth generates carbonatitic and carbonated silicate melts and are the chief agents for liberating carbon from the solid Earth to the exosphere. Petrology allows net ingassing of carbon into the mantle in the modern Earth, but in the hotter subduction zones that prevailed during the Hadean, Archean, and Paleoproterozoic, carbonate likely was released at shallow depths and may have returned to the exosphere. Inefficient ingassing, along with efficient outgassing, may have kept the ancient mantle carbon-poor. The influence of carbon on deep Earth dynamics is through inducing melting and mobilization of structurally bound mineral water. Extraction of carbonated melt on one hand can dehydrate the mantle and enhance viscosity; the presence of trace carbonated melt on other may generate seismic low-velocity zones and amplify attenuation.
机译:地幔衍生样品的碳地球化学表明,与深部循环有关的通量和储层大小分别为10〜(12-13)gC / yr和10〜(22-23)gC。这个深循环是陆地碳储集层数十亿年规模演变的原因。深度储存的岩石学调节着陆地碳的长期演化和分布。与水不同,水在地球的大部分地幔中都保存在名义上无水的硅酸盐中,而碳则存储在辅助相中。假设质量平衡和氧化态仅由硅酸盐缓冲,则随着深度的增加,感兴趣的辅助相通常从流体/熔体→方解石/白云石→菱镁矿→金刚石/富铁合金/铁金属碳化物变化。但是,如果碳足够丰富,即使在深地幔中也可能以碳酸盐的形式存在。如果地球的深层地幔是铁金属饱和的,那么对于贫化和富集区域,金属合金中的碳存储和金属碳化物中的碳存储是不可避免的。碳酸盐化的海洋岩石圈的现代俯冲有助于碳向内部的充入,而碳酸盐化地幔的减压融化控制了地幔中的放气。深度大于300 km的碳化融化或含金刚石或含金属的地幔的氧化还原融化在较浅的深度会产生碳酸盐和碳酸盐化的硅酸盐熔体,并且是将碳从固体地球释放到外层的主要作用剂。岩石学允许将碳净吸收到现代地球的地幔中,但是在Hadean,Archean和古元古生代盛行的较热俯冲带中,碳酸盐可能在较浅的深度释放,并可能返回到外层。低效的装填以及有效的除气可能使古代地幔的碳贫乏。碳对深层地球动力学的影响是通过诱导结构结合矿泉水的融化和动员。一方面提取碳酸熔体可以使地幔脱水并提高粘度;另一方面痕量碳酸熔体的存在可能会产生地震低速带并放大衰减。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号