首页> 外文学位 >Deformation mechanisms, architecture, and petrophysical properties of large normal faults in platform carbonates and their role in the release of carbon dioxide from earth's interior in central Italy.
【24h】

Deformation mechanisms, architecture, and petrophysical properties of large normal faults in platform carbonates and their role in the release of carbon dioxide from earth's interior in central Italy.

机译:碳酸盐台地中大型正常断层的变形机制,构造和岩石物性及其在意大利中部地球内部二氧化碳释放中的作用。

获取原文
获取原文并翻译 | 示例

摘要

A challenging theme of research in structural geology is the process of faulting in carbonate rocks: how do the resulting internal architecture and petrophysical properties of faults affect subsurface fluid flow. A better understanding of this process is important to evaluate the potential oil and gas recovery from carbonate reservoirs, and to plan CO 2 containment in the depleted reservoirs. Carbonate rocks may deform with different mechanisms depending primarily on their original sedimentary fabric, diagenetic history, fluid content, and tectonic environment. In this dissertation I investigate the deformation mechanisms, petrophysics, and internal fluid composition of large, seismic, basin-bounding normal faults in low porosity platform carbonates. Based on the nature, orientation, and abutting relationships of the structural elements preserved within the faults and in the surrounding carbonate host rocks, I was able to characterize the mechanisms of fault growth and the fault architecture. Incipient faulting occurred at shallow depths by sequential formation and shearing of pressure solution seams and joints/veins; with ongoing deformation and exhumation, the joint-based mechanism became predominant. The end result is a mature normal fault that juxtaposes basin sedimentary rocks of the hanging wall against deformed carbonates of the footwall.; The deformed carbonates of the fault footwalls are composed of rocks with low porosity and permeability and major slip surfaces in the fault core, and fragmented carbonate matrices with high porosity and permeability, and small faults in the damage zone. The degree of fragmentation in the damage zone generally increases towards the fault hanging wall, forming structural domains characterized by different deformation intensity. The rocks of the fault core have sub-spherical pores, those of the damage zone have elongated, crack-like, pores. The permeability structure of the normal fault zones is therefore made up of a fault core that acts as a barrier to fluid flow, and fragmented carbonates that enhance fluid flow. Stable isotope geochemistry data shows two main sources of the fluids that precipitated minerals within the normal faults. The main fluid source is infiltrated meteoric water, the second is CO2-enriched groundwater. Both fluids compartmentalized primarily along the major slip surfaces of the fault cores.
机译:结构地质研究的一个具有挑战性的主题是碳酸盐岩断层的过程:断层的内部构造和岩石物理特性如何影响地下流体流动。更好地了解此过程对于评估碳酸盐岩储层中潜在的油气采收率以及计划枯竭的储层中的CO 2含量非常重要。碳酸盐岩可能以不同的机制变形,这主要取决于它们的原始沉积构造,成岩史,流体含量和构造环境。在本文中,我研究了低孔隙度平台碳酸盐岩中大的,地震性的,盆地边界的正断层的变形机制,岩石物理学和内部流体组成。基于断层内部和周围碳酸盐基质岩中保留的结构元素的性质,方向和邻接关系,我能够表征断层的发育机理和断层构造。通过依次形成和剪切压力溶液接缝和接缝/静脉,在浅层深度发生了早期断裂。随着变形和发掘的不断进行,基于关节的机制变得占主导地位。最终结果是一条成熟的正断层,使垂壁的盆地沉积岩与下壁的碳酸盐变形并置。断层下盘的变形碳酸盐是由孔隙度低,渗透率低的岩石和断层岩心中的主要滑动面组成,破碎的碳酸盐岩基质具有高孔隙度和渗透率的,而破坏区的断层较小。破坏区的破碎程度通常朝断层悬挂壁增加,形成以不同变形强度为特征的结构域。断层岩心的岩石具有亚球形孔隙,损伤区的岩石具有细长的裂纹状孔隙。因此,正常断层带的渗透性结构由作为流体流动屏障的断层岩心和增强流体流动的碳酸盐碎片组成。稳定的同位素地球化学数据显示出在正常断层内沉淀矿物的流体的两个主要来源。主要流体源是渗透的大气水,其次是富含CO2的地下水。两种流体主要沿断层岩心的主滑动面划分。

著录项

  • 作者

    Agosta, Fabrizio.;

  • 作者单位

    Stanford University.;

  • 授予单位 Stanford University.;
  • 学科 Geology.; Geophysics.; Geochemistry.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 138 p.
  • 总页数 138
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 地质学;地球物理学;地质学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号