...
首页> 外文期刊>International Journal of Quantum Chemistry >Density functional and molecular orbital study of physical process of inversion of nitrogen trifluoride(NF_3)molecule
【24h】

Density functional and molecular orbital study of physical process of inversion of nitrogen trifluoride(NF_3)molecule

机译:三氟化氮(NF_3)分子转化物理过程的密度泛函和分子轨道研究

获取原文
获取原文并翻译 | 示例
           

摘要

The physical process of the umbrella inversion of the nitrogen trifluoride molecule has been studied invoking the formalisms of the density functional theory,the frontier orbital theory,and the molecular orbital theory.An intuitive structure and dynamics of evolution of the transition state for the event of inversion is suggested.The physical process of dynamic evolution of the molecular conformations between the equilibrium(C_(3v))shape and the planar(D_(3h))transition state has been followed by a number of molecular orbital and density functional parameters like the total energy,the eigenvalues of the frontier orbitals,the highest occupied molecular orbital and lowest unoccupied molecular orbital,the highest occupied molecular orbital and lowest unoccupied molecular orbital,the(HOMO-LUMO)gap,the global hardness and softness,and the chemical potential.The molecular conformations are generated by deforming the angle FNF angle through steps of 2 deg from its equilibrium value,and the cycle is continued till the planar transition state is reached,and the geometry of each conformation is optimized with respect to the length of the N-F bond.The geometry optimization demonstrates that the structural evolution entails an associated slow decrease in the length of the N-F bond.The dipole moment at the equilibrium form is small and that at the transition state is zero and shows a stange behavior with the evolution of conformations.As the molecular structure begins to distort from its equilibrium shape by opening of the angle FNF angle,the dipole moment starts increasing very sharply,and the trend continues very near to the transition state but abruptly vanishes at the transition state.A rationale of the strange variation of dipole moment as a function of evolution of conformatios could be obtained in terms of quantum mechanical hybridization of the lone pair on the N atom.The pattern of charge density reorganization as a function of geometry evolution is continuous depletion of charge from the F center and piling up of charge on the N center.The continuous shortening of bond length and the pattern of variation of net charge densities no atomic sites with evolution of molecular conformations predicts that the bond moment would decrease continuously.The quantum mechanical hybridization of the lone pair of the central N atom shows that the percentage of s character of the lone-pair hybrid on the N atom decreases at a very accelerated rate,and the lone pair at the transition state is accommodated in a pure p orbital.The result of the continued destruction of asymmetry of charge distribution in the lone pair on the central N atom due to the elimination of contribution of the s orbital with evolution of molecular conformations is the sharp decrease in long-pair moment.The decrease in bond moment is overcompensated by the sharp fall of its offestting component,the lone-pair moment,resulting in a net gain in dipole moment with the evolution of molecular geometry.Since the offsetting component decreases very sharply,the net effect is a sharp rise of dipole moment with the evolution of molecular conformations just before the transition state.The lone-pair moment is zero by molecular conformations just before the transition state.The lone-pair moment is zero by molecular conformations just before the transition state.The lone-pair moment is zero by virtue of the symmetry of the pure p orbital,the lone pair of the central atom in the transition state,and the sum of the bond moments is zero by symmetry of the geometry.The barrier height is quite high at approx 65.45kcal/mol,which is close to values computed through more sophisticated methods.It is argued that an earlier suggestion regarding the development of high barrier value of NF_3 system seems to be misleading and confronting with the conclusions of the density functional theory.An analysis and a comparative study of the physical components of the one-and two-center energy terms reveals that
机译:研究了三氟化氮分子伞转化的物理过程,涉及密度泛函理论,前沿轨道理论和分子轨道理论的形式主义。平衡(C_(3v))形状和平面(D_(3h))过渡态之间的分子构象动态演化的物理过程之后,跟随着许多分子轨道和密度泛函,例如总能量,边界轨道的特征值,最大占据分子轨道和最低未占据分子轨道,最高占据分子轨道和最低未占据分子轨道,(HOMO-LUMO)间隙,整体硬度和柔软度以及化学势分子构象是通过将角FNF角从其平衡值开始以2度的步长变形和cy来生成的继续进行直到达到平面过渡状态,并且就NF键的长度优化了每个构象的几何形状。几何优化表明,结构演变必然伴随着NF键长度的缓慢减小。平衡形式的偶极矩很小,过渡态的偶极矩为零,并且随着构象的演化而表现出稳定的行为。随着分子结构开始通过打开FNF角而偏离其平衡形状,偶极矩偶极矩的奇异变化随构象的演化而变化的原理可以从量子力学的角度获得。 N原子上的孤对。电荷密度重组的模式随几何演化而变化,是连续耗尽F中心电荷的积累和N中心电荷的积累。键长的持续缩短和净电荷密度的变化模式没有分子结构演变的原子位点,预示着键矩将不断减小。对中心N原子孤对的机械杂交表明,N对孤对杂化物的s特性百分比以非常快的速率降低,过渡态的孤对被容纳在一个纯p轨道中由于消除了s轨道的贡献以及分子构象的演化,中心N原子上孤对中电荷分布的不对称性继续受到破坏的结果是长对矩急剧减小。它的引人注目的组成部分(孤对矩)的急剧下降过度补偿了该矩,从而随着分子几何结构的演化而导致偶极矩的净增益。由于抵消成分急剧减少,因此净效应是偶极矩急剧增加,而过渡态之前的分子构象才发生演化。孤对矩在过渡态之前的分子构象为零。过渡态之前的分子构象矩为零。孤对矩由于纯p轨道的对称性,过渡态中心原子的孤对和键矩之和为零,因此偶对矩为零。势垒高度为65.45kcal / mol,非常接近于通过复杂的方法计算得出的值。有人认为,关于NF_3系统的高势垒值发展的早期建议似乎是对密度泛函理论的结论有误导性和正视性。对一中心和两中心能量项的物理成分的分析和比较研究表明:

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号