...
首页> 外文期刊>Applied thermal engineering: Design, processes, equipment, economics >Intermingled fractal units model and electrical equivalence fractal approach for prediction of thermal conductivity of porous materials
【24h】

Intermingled fractal units model and electrical equivalence fractal approach for prediction of thermal conductivity of porous materials

机译:混合分形单元模型和电当量分形方法预测多孔材料的导热系数

获取原文
获取原文并翻译 | 示例
           

摘要

The effective thermal conductivity of porous materials is a function of the intrinsic characteristic of the solid and the fluid phases that occupy the pores, of the volume fraction of the pores, and of their dimensional distribution. This last aspect is less known and studied than the others because the porous microstructure is difficult to define in conventional geometric terms. In this work, an Intermingled Fractal Units model (denominated IFU) is presented, developed by varying some constructive aspects of the Sierpinski carpet. Simple fractals can be used effectively to describe pore size distributions which present a regular growth toward the larger diameters and therefore are not suited to describe very common structures which present one or more peaks in their distribution. But the use of more fractal units means that the IFU is able to effectively simulate the pore size distribution, the volume fractions of the voids as well as the geometry of the microstructure of non-fractal porous materials. By turning IFU model into electrical fractal pattern, it is possible to calculate effective thermal con-ductivity of the materials. In this approach the value of effective thermal conductivity coefficient derived from the nth stage was used as a default value for the solid phase in the nth + 1 step. This full fractal procedure has been verified with deterministic or random fractal models as well as with some porosity-conductivity experimental data, namely, those obtained from advanced ceramics (Yitria stabilized zirconia) already available in the scientific literature and the results are comparable and very close.
机译:多孔材料的有效热导率是占据孔的固体和流体相的固有特性,孔的体积分数及其尺寸分布的函数。这最后一个方面比其他方面鲜为人知和研究,因为多孔微结构很难用常规的几何术语定义。在这项工作中,通过改变Sierpinski地毯的一些建设性方面,提出了一个混合分形单元模型(称为IFU)。简单的分形可有效地描述孔径分布,该分布呈现出朝着较大直径的规律增长,因此不适合描述在其分布中呈现一个或多个峰值的非常常见的结构。但是,使用更多的分形单元意味着IFU能够有效地模拟孔径分布,空隙的体积分数以及非分形多孔材料的微观结构的几何形状。通过将IFU模型转换为电分形图案,可以计算材料的有效热导率。在这种方法中,将第n阶段得到的有效导热系数值用作第n + 1步中固相的默认值。这种完整的分形过程已通过确定性或随机分形模型以及一些孔隙率-电导率实验数据进行了验证,即从科学文献中已有的高级陶瓷(氧化钇稳定的氧化锆)获得的数据,结果可比并且非常接近。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号