...
首页> 外文期刊>Applied Geochemistry: Journal of the International Association of Geochemistry and Cosmochemistry >Hydrogeochemical processes governing the origin, transport and fate of major and trace elements from mine wastes and mineralized rock to surface waters
【24h】

Hydrogeochemical processes governing the origin, transport and fate of major and trace elements from mine wastes and mineralized rock to surface waters

机译:从矿山废料和矿化岩石到地表水的主要和微量元素的起源,运输和命运的水文地球化学过程

获取原文
获取原文并翻译 | 示例
           

摘要

The formation of acid mine drainage from metals extraction or natural acid rock drainage and its mixing with surface waters is a complex process that depends on petrology and mineralogy, structural geology, geomorphology, surface-water hydrology, hydrogeology, climatology, microbiology, chemistry, and mining and mineral processing history. The concentrations of metals, metalloids, acidity, alkalinity, Cl~-, F~- and SO42- found in receiving streams, rivers, and lakes are affected by all of these factors and their interactions. Remediation of mine sites is an engineering concern but to design a remediation plan without understanding the hydrogeochemical processes of contaminant mobilization can lead to ineffective and excessively costly remediation. Furthermore, remediation needs a goal commensurate with natural background conditions rather than water-quality standards that might bear little relation to conditions of a highly mineralized terrain. This paper reviews hydrogeochemical generalizations, primarily from US Geological Survey research, that enhance our understanding of the origin, transport, and fate of contaminants released from mined and mineralized areas.Mobility of potential or actual contaminants from mining and mineral processing activities depends on (1) occurrence: is the mineral source of the contaminant actually present? (2) abundance: is the mineral present in sufficient quantity to make a difference? (3) reactivity: what are the energetics, rates, and mechanisms of sorption and mineral dissolution and precipitation relative to the flow rate of the water? and (4) hydrology: what are the main flow paths for contaminated water? Estimates of relative proportions of minerals dissolved and precipitated can be made with mass-balance calculations if minerals and water compositions along a flow path are known. Combined with discharge, these mass-balance estimates quantify the actual weathering rate of pyrite mineralization in the environment and compare reasonably well with laboratory rates of pyrite oxidation except when large quantities of soluble salts and evaporated mine waters have accumulated underground. Quantitative mineralogy with trace-element compositions can substantially improve the identification of source minerals for specific trace elements through mass balances. Post-dissolution sorption and precipitation (attenuation) reactions depend on the chemical behavior of each element, solution composition and pH, aqueous speciation, temperature, and contact-time with mineral surfaces. For example, little metal attenuation occurs in waters of low pH (<3.5) and metals tend to maintain element ratios indicative of the main mineral or group of minerals from which they dissolved, except Fe, SiO2, and redox-sensitive oxyanions (As, Sb, Se, Mo, Cr, V). Once dissolved, metal and metalloid concentrations are strongly affected by redox conditions and pH. Iron is the most reactive because it is rapidly oxidized by bacteria and archaea and Fe(III) hydrolyzes and precipitates at low pH (1-3) which is related directly to its first hydrolysis constant, pK_1=2.2. Several insoluble sulfate minerals precipitate at low pH including anglesite, barite, jarosite, alunite and basaluminite. Aluminum hydrolyzes near pH 5 (pK_1=5.0) and provides buffering and removal of Al by mineral precipitation from pH 4-5.5. Dissolved sulfate behaves conservatively because the amount removed from solution by precipitation is usually too small relative to the high concentrations in the water column and relative to the flow rate of the water.
机译:由金属提取或天然酸性岩石排泄形成酸性矿山排水并将其与地表水混合是一个复杂的过程,取决于岩石学和矿物学,结构地质,地貌学,地表水文学,水文地质学,气候学,微生物学,化学和采矿和矿物加工的历史。所有这些因素及其相互作用都会影响接收河流,河流和湖泊中金属,准金属,酸度,碱度,Cl〜-,F〜-和SO42-的浓度。矿场的修复是工程方面的问题,但是在设计修复计划时如果不了解污染物动员的水文地球化学过程,可能会导致无效的修复和昂贵的修复。此外,整治需要一个与自然背景条件相称的目标,而不是与可能与高度矿化的地形条件几乎没有关系的水质标准相称的目标。本文回顾了主要来自美国地质调查局的水文地球化学概论,这些概论增强了我们对矿山和矿化区释放的污染物的来源,运输和结局的了解。采矿和矿物加工活动产生的潜在或实际污染物的流动性取决于(1 )发生:实际上存在污染物的矿物源吗? (2)丰富:矿物质的存在量足以产生变化吗? (3)反应性:相对于水的流量,能量,速率和吸附,矿物质溶解和沉淀的机理是什么? (4)水文学:受污染水的主要流动路径是什么?如果已知沿流动路径的矿物质和水的组成,则可以通过质量平衡计算来估算溶解和沉淀的矿物质的相对比例。结合排放量,这些质量平衡估算值可以量化环境中黄铁矿矿化的实际风化率,并与实验室中的黄铁矿氧化率进行合理比较,除非地下积累了大量可溶性盐和蒸发的矿泉水。具有微量元素组成的定量矿物学可以通过质量平衡大大改善对特定微量元素的源矿物的识别。溶解后的吸附和沉淀(衰减)反应取决于每种元素的化学行为,溶液组成和pH,水溶液的形态,温度以及与矿物表面的接触时间。例如,在低pH值(<3.5)的水中几乎没有金属衰减,并且金属趋于保持元素比例,这些元素比例指示了从中溶解的主要矿物质或矿物组,但Fe,SiO2和氧化还原敏感的氧阴离子(As, Sb,Se,Mo,Cr,V)。溶解后,金属和准金属的浓度会受到氧化还原条件和pH的强烈影响。铁是最活泼的,因为它会被细菌和古细菌迅速氧化,并且Fe(III)在低pH值(1-3)时会水解和沉淀,这直接关系到其第一水解常数pK_1 = 2.2。几种不溶性硫酸盐矿物在低pH值下会沉淀,包括角铁矿,重晶石,黄钾铁矿,亚矾石和玄武岩。铝在pH 5(pK_1 = 5.0)附近水解,并通过从pH 4-5.5的矿物沉淀来缓冲和去除Al。溶解的硫酸盐表现保守,因为相对于水柱中的高浓度和水的流速而言,通过沉淀从溶液中去除的量通常太少。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号