...
首页> 外文期刊>ACS nano >Complementary Imaging of Silver Nanoparticle Interactions with Green Algae: Dark-Field Microscopy, Electron Microscopy, and Nanoscale Secondary Ion Mass Spectrometry
【24h】

Complementary Imaging of Silver Nanoparticle Interactions with Green Algae: Dark-Field Microscopy, Electron Microscopy, and Nanoscale Secondary Ion Mass Spectrometry

机译:与绿藻银纳米粒子相互作用的互补成像:暗场显微镜,电子显微镜和纳米级二次离子质谱法

获取原文
获取原文并翻译 | 示例
           

摘要

Increasing consumer use of engineered nanomaterials has led to significantly increased efforts to understand their potential impact on the environment and living organisms. Currently, no individual technique can provide all the necessary information such as their size, distribution, and chemistry in complex biological systems. Consequently, there is a need to develop complementary instrumental imaging approaches that provide enhanced understanding of these "bio-nano" interactions to overcome the limitations of individual techniques. Here we used a multimodal imaging approach incorporating dark-field light microscopy, high-resolution electron microscopy, and nanoscale secondary ion mass spectrometry (NanoSIMS). The aim was to gain insight into the bio-nano interactions of surface-functionalized silver nanoparticles (Ag-NPs) with the green algae Raphidocelis subcapitata, by combining the fidelity, spatial resolution, and elemental identification offered by the three techniques, respectively. Each technique revealed that Ag-NPs interact with the green algae with a dependence on the size (10 nm vs 60 nm) and surface functionality (tannic acid vs branched polyethylenimine, bPEI) of the NPs. Dark-field light microscopy revealed the presence of strong light scatterers on the algal cell surface, and SEM imaging confirmed their nanoparticulate nature and localization at nanoscale resolution. NanoSIMS imaging confirmed their chemical identity as Ag, with the majority of signal concentrated at the cell surface. Furthermore, SEM and NanoSIMS provided evidence of 10 nm bPEI Ag-NP internalization at higher concentrations (40 mu g/L), correlating with the highest toxicity observed from these NPs. This multimodal approach thus demonstrated an effective approach to complement dose-response studies in nano-(eco)-toxicological investigations.
机译:增加消费者使用工程纳米材料导致了解努力,了解他们对环境和生物体的潜在影响。目前,没有个性化技术可以在复杂的生物系统中提供所有必要的信息,例如它们的大小,分布和化学。因此,需要开发互补的仪器成像方法,其提供对这些“生物纳米”相互作用的提高理解,以克服个体技术的局限性。在这里,我们使用了一种多模式成像方法,包括暗场光学光学,高分辨率电子显微镜和纳米级二次离子质谱法(纳米键)。目的是通过分别与三种技术提供的保真度,空间分辨率和元素识别相结合,进入与绿藻Raphidocelis子谱系的表面官能化银纳米粒子(Ag-NPS)的生物纳米相互作用。每种技术揭示了Ag-NP与绿藻相互作用,依赖于尺寸(10nm与60nm)和NPS的表面官能度(鞣酸Vs支化聚乙烯,BPEI)。暗场光学显微镜显示藻类细胞表面上强光散射体的存在,SEM成像证实了它们在纳米级分辨率下的纳米颗粒性质和定位。 Nanosims成像证实了它们的化学标识为Ag,大多数信号集中在细胞表面。此外,SEM和纳米粒子在较高浓度(40μmg/ L)下提供了10nM BPEI Ag-NP内化的证据,与这些NPS观察到的最高毒性相关。因此,这种多模式方法证明了纳米(Eco) - 毒理学研究中补充剂量 - 反应研究的有效方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号