...
首页> 外文期刊>ACS nano >'Electron/Ion Sponge'-Like V-Based Polyoxometalate: Toward High-Performance Cathode for Rechargeable Sodium Ion Batteries
【24h】

'Electron/Ion Sponge'-Like V-Based Polyoxometalate: Toward High-Performance Cathode for Rechargeable Sodium Ion Batteries

机译:“电子/离子海绵” - 基于V基聚毒液酸盐:朝向可充电钠离子电池的高性能阴极

获取原文
获取原文并翻译 | 示例
           

摘要

One key challenge facing room temperature Na-ion batteries lies in identifying earth-abundant, environmentally friendly and safe materials that can provide efficient Na+ storage sites in Na-ion batteries. Herein, we report such a material, polyoxometalate Na2H8[MnV13O38] (NMV), with entirely different composition and structure from those cathode compounds reported before. Ex-situ XPS and FTIR analyses reveal that NMV cathode behaves like an "electron/Na-ion sponge", with 11 electrons/Na+ acceptability per mole, which has a decisive contribution to the high capacity. The extraordinary structural features, evidenced by X-ray crystallographic analysis, of Na2H8[MnV13O38] with a flexible 2D lamellar network and 1D open channels provide diverse Na ion migration pathways, yielding good rate capability. First-principle calculations demonstrate that a super-reduced state, [MnV13O38](20-), is formed with slightly expanded size (ca. 7.5%) upon Na+ insertion compared to the original [MnV13O38](9-). This "ion sponge" feature ensures the good cycling stability. Consequently, benefiting from the combinations of "electron/ion sponge" with diverse Na+ diffusion channels, when revealed as the cathode materials for Na-ion batteries, Na2H8[MnV13O38]/G exhibits a high specific capacity (ca. 190 mA h/g at 0.1 C), associates with a good rate capability (130 mA h/g at 1 C), and a good capacity retention (81% at 0.2 C). Our results promote better understanding of the storage mechanism in polyoxometalate host, enrich the existing rechargeable SIBs cathode chemistry, and enlighten an exciting direction for exploring promising cathode materials for Na-ion batteries.
机译:室温Na离子电池面临的一个关键挑战是识别可以在Na离子电池中提供有效的Na +储存场所的地球丰富,环保和安全的材料。在此,我们报告了这种材料,多氧酸钠Na 2 H 8 [MnV13O38](NMV),其与之前报道的那些阴极化合物的完全不同的组成和结构。前XPS和FTIR分析显示NMV阴极的表现类似于“电子/ Na离子海绵”,每摩尔11个电子/ NA +可接受性,这对高容量具有决定性的贡献。具有柔性2D层状网络和1D开放通道的Na2H8 [MNV13O38]由X射线晶体分析证明的非凡结构特征提供了多样的Na离子迁移途径,产生良好的速率。第一原理计算表明,与原始[MNV13O38](9-)相比,在Na +插入时,在Na +插入时形成超减少的状态[MnV13O38](20-)。这种“离子海绵”功能确保了良好的循环稳定性。因此,从“电子/离子海绵”的组合具有不同的Na +扩散通道的组合,当作为Na离子电池的阴极材料透露时,Na 2 H8 [MnV13O38] / g表现出高度的特定容量(CA.190MA H / G.在0.1 c),具有良好的速率能力(1℃的130mA H / g),良好的容量保持(81%在0.2℃)。我们的结果促进了更好地了解多氧化血液宿主中的储存机制,丰富现有的可充电SIBS阴极化学,并开明探索Na离子电池的有前途的阴极材料的激励方向。

著录项

  • 来源
    《ACS nano》 |2017年第7期|共10页
  • 作者单位

    Nanyang Technol Univ Sch Phys &

    Math Sci Div Phys &

    Appl Phys Singapore 637371 Singapore;

    Nanyang Technol Univ Energy Res Inst ERI N Interdisciplinary Grad Sch Singapore 637553 Singapore;

    Nanyang Technol Univ Sch Phys &

    Math Sci Div Phys &

    Appl Phys Singapore 637371 Singapore;

    Nanyang Technol Univ Sch Mat Sci &

    Engn Singapore 639798 Singapore;

    Nanyang Technol Univ Energy Res Inst ERI N Interdisciplinary Grad Sch Singapore 637553 Singapore;

    Nanyang Technol Univ Sch Mat Sci &

    Engn Singapore 639798 Singapore;

    Natl Univ Singapore Dept Chem CA2DM 3 Sci Dr 3 Singapore 117543 Singapore;

    Harbin Univ Sci &

    Technol Sch Appl Sci Harbin 150080 Heilongjiang Peoples R China;

    Jilin Univ Minist Educ Key Lab Automobile Mat Changchun 130012 Jilin Peoples R China;

    Nanyang Technol Univ Sch Mat Sci &

    Engn Singapore 639798 Singapore;

    Nanyang Technol Univ Sch Phys &

    Math Sci Div Phys &

    Appl Phys Singapore 637371 Singapore;

    Nanyang Technol Univ Energy Res Inst ERI N Interdisciplinary Grad Sch Singapore 637553 Singapore;

    Nanyang Technol Univ Sch Phys &

    Math Sci Div Phys &

    Appl Phys Singapore 637371 Singapore;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 分子物理学、原子物理学;
  • 关键词

    sodium ion battery; polyoxometalates; mechanism; sponge; first principle calculation;

    机译:钠离子电池;聚毒素;机制;海绵;第一个原则计算;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号