...
首页> 外文期刊>ACS nano >Built-In Catalysis in Confined Nanoreactors for High-Loading Li-S Batteries
【24h】

Built-In Catalysis in Confined Nanoreactors for High-Loading Li-S Batteries

机译:内置纳米反应器内置催化,用于高装Li-S电池

获取原文
获取原文并翻译 | 示例
           

摘要

A cathode host with strong sulfur/polysulfide confinement and fast redox kinetics is a challenging demand for high-loading lithium-sulfur batteries. Recently, porous carbon hosts derived from metal-organic frameworks (MOFs) have attracted wide attention due to their unique spatial structure and customizable reaction sites. However, the loading and rate performance of Li-S cells are still restricted by the disordered pore distribution and surface catalysis in these hosts. Here, we propose a concept of built-in catalysis to accelerate lithium polysulfide (LiPSs) conversion in confined nanoreactors, i.e., laterally stacked ordered crevice pores encompassed by MoS2-decorated carbon thin layers. The functions of S-fixability and LiPS catalysis in these mesoporous cavity reactors benefit from the 2D interface contact between ultrathin catalytic MoS2 and conductive C pyrolyzed from AI-MOF. The integrated function of adsorption-catalysis-conversion endows the sulfur-infused c@mos(2) electrode with a high initial capacity of 1240 mAh g(-1) at 0.2 C, long life cycle stability of at least 1000 cycles at 2 C, and high rate endurance up to 20 C. This electrode also exhibits commercial potential in view of considerable capacity release and reversibility under high sulfur loading (6 mg cm(-2) and , similar to 80 wt %) and lean electrolyte (E/S ratio of 5 mu L mg(-1) ). This study provides a promising design solution of a catalysis-conduction 2D interface in a 3D skeleton for high-loading Li-S batteries.
机译:具有强硫/​​多硫化物限制和快速氧化还原动力学的阴极宿主是对高装载锂硫电池的具有挑战性的需求。最近,由于其独特的空间结构和可定制的反应位点,来自金属 - 有机框架(MOFS)的多孔碳主体引起了广泛的关注。然而,Li-S细胞的装载和速率性能仍然受到这些宿主中无序的孔分布和表面催化的限制。在这里,我们提出了一种内置催化的概念,以加速密闭纳米反应器中的多硫化锂(嘴唇)转换,即,由MOS2装饰碳薄层包围的横向堆叠有序的缝隙孔。这些介孔腔反应器中的S型固定性和嘴唇催化的功能受益于超薄催化MOS2和从AI-MOF热解的导电C之间的2D接口接触。吸附催化转化率的综合功能在0.2℃下具有1240mAhg(-1)的高初始容量,在2℃下的长寿命稳定至少1000次循环,高达20℃的高速率耐久性。该电极也表现出商业潜力,考虑到高硫载荷(6mg cm(-2)和类似80wt%)和贫电解质(E /)的相当大容量释放和可逆性(E / S比例为5μlmg(-1))。本研究提供了在3D骨架中的催化传导2D界面的有希望的设计解决方案,用于高负载Li-S电池。

著录项

  • 来源
    《ACS nano》 |2020年第3期|共13页
  • 作者单位

    Chinese Acad Sci Shanghai Inst Ceram State Key Lab High Peiformance Ceram &

    Superfine Shanghai 201899 Peoples R China;

    Chinese Acad Sci Shanghai Inst Ceram State Key Lab High Peiformance Ceram &

    Superfine Shanghai 201899 Peoples R China;

    Chinese Acad Sci Shanghai Inst Ceram State Key Lab High Peiformance Ceram &

    Superfine Shanghai 201899 Peoples R China;

    East China Univ Sci &

    Technol State Key Lab Chem Engn Shanghai 200237 Peoples R China;

    East China Univ Sci &

    Technol State Key Lab Chem Engn Shanghai 200237 Peoples R China;

    Chinese Acad Sci Shanghai Inst Ceram State Key Lab High Peiformance Ceram &

    Superfine Shanghai 201899 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 分子物理学、原子物理学;
  • 关键词

    Li-S batteries; metal-organic frameworks; built-in catalysis; carbon hosts; confined nanoreactors;

    机译:LI-S电池;金属有机框架;内置催化;碳主体;狭窄的纳米反应器;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号