...
首页> 外文期刊>ACS nano >Surface depletion induced quantum confinement in CdS nanobelts
【24h】

Surface depletion induced quantum confinement in CdS nanobelts

机译:CdS纳米带中的表面耗尽诱导量子限制

获取原文
获取原文并翻译 | 示例
           

摘要

Figure Persented: We investigate the surface depletion induced quantum confinement in CdS nanobelts beyond the quantum confinement regime, where the thickness is much larger than the bulk exciton Bohr radius. From room temperature to 77 K, the emission energy of free exciton A scales linearly versus 1/L ~2 when the thickness L is less than 100 nm, while a deviation occurs for those belts thicker than 100 nm due to the reabsorption effect. The 1/L ~2 dependence can be explained by the surface depletion induced quantum confinement, which modifies the confinement potential leading to a quasi-square potential well smaller than the geometric thickness of nanobelts, giving rise to the confinement effect to exciton emission beyond the quantum confinement regime. The surface depletion is sensitive to carrier concentration and surface states. As the temperature decreases, the decrease of the electrostatic potential drop in the surface depletion region leads to a weaker confinement due to the decrease of carrier concentration. With a layer of polymethyl methacrylate (PMMA) passivation, PL spectra exhibit pronounced red shifts due to the decrease of the surface states at room temperature. No shift is found at 10 K both with or without PMMA passivation, suggesting a much weaker depletion field due to the freezing-out of donors.
机译:可能的图:我们研究了超出量子限制范围的CdS纳米带中的表面耗竭诱导的量子限制,其厚度远大于本体激子玻尔半径。从室温到77 K,当厚度L小于100 nm时,自由激子A的发射能量相对于1 / L〜2呈线性比例变化,而那些厚度大于100 nm的带由于重吸收效应而发生偏离。 1 / L〜2依赖性可以通过表面耗尽诱导的量子约束来解释,该量子约束修饰了约束势,从而导致准平方势远小于纳米带的几何厚度,从而产生了超出激发态的约束效应。量子约束制度。表面耗尽对载流子浓度和表面状态敏感。随着温度降低,由于载流子浓度的降低,表面耗尽区中的静电势下降的降低导致限制较弱。对于一层聚甲基丙烯酸甲酯(PMMA)钝化层,由于室温下表面状态的降低,PL光谱显示出明显的红移。无论有无PMMA钝化,在10 K下都没有发现位移,这表明由于供体的冻结,耗尽层的强度要弱得多。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号