...
首页> 外文期刊>ACS nano >Generalized Mechanistic Model for the Chemical Vapor Deposition of 2D Transition Metal Dichalcogenide Monolayers
【24h】

Generalized Mechanistic Model for the Chemical Vapor Deposition of 2D Transition Metal Dichalcogenide Monolayers

机译:二维过渡金属二硫属元素化物单层化学气相沉积的广义机理模型

获取原文
获取原文并翻译 | 示例
           

摘要

Transition metal dichalcogenides (TMDs) like molybdenum disulfide (MoS2) and tungsten disulfide (WS2) are layered materials capable of growth to one monolayer thickness via chemical vapor deposition (CVD). Such CVD methods, while powerful, are notoriously difficult to extend across different reactor types and conditions, with subtle variations often confounding reproducibility, particularly for 2D TMD growth. In this work, we formulate the first generalized TMD synthetic theory by constructing a thermodynamic and kinetic growth mechanism linked to CVD reactor parameters that is predictive of specific geometric shape, size, and aspect ratio from triangular to hexagonal growth, depending specific CVD reactor conditions. We validate our model using experimental data from Wang et al. (Chem. Mater. 2014, 26, 6371-6379) that demonstrate the systemic evolution of MoS2 morphology down the length of a flow CVD reactor where variations in gas phase concentrations can be accurately estimated using a transport model (C-sulfur = 9-965 mu mol/m(3); C-MoO3 = 15-16 mmol/m(3)) under otherwise isothermal conditions (700 degrees C). A stochastic model which utilizes a site dependent activation energy barrier based on the intrinsic TMD bond energies and a series of Evans-Polanyi relations leads to remarkable, quantitative agreement with both shape and size evolution along the reactor. The model is shown to extend to the growth of WS2 at 800 degrees C and MoS2 under varied process conditions. Finally, a simplified theory is developed to translate the model into a "kinetic phase diagram" of the growth process. The predictive capability of this model and its extension to other TMD systems promise to significantly increase the controlled synthesis of such materials.
机译:像二硫化钼(MoS2)和二硫化钨(WS2)这样的过渡金属二卤化碳(TMDs)是能够通过化学气相沉积(CVD)生长到一个单层厚度的层状材料。这种CVD方法虽然功能强大,但众所周知难以在不同的反应器类型和条件下进行扩展,而细微的变化通常会混淆再现性,尤其是对于2D TMD生长而言。在这项工作中,我们通过构建与CVD反应器参数相关联的热力学和动力学生长机制来制定第一个广义的TMD合成理论,该机理可预测特定几何形状,尺寸以及从三角形到六边形生长的具体几何形状,大小和长宽比,具体取决于特定的CVD反应器条件。我们使用Wang等人的实验数据验证了我们的模型。 (Chem。Mater。2014,26,6371-6379)证明了MoS2形态在流式CVD反应器长度范围内的系统演化,其中可以使用传输模型(C-硫= 9- 965μmol / m(3); C-MoO3 = 15-16 mmol / m(3))在其他等温条件下(700摄氏度)。利用基于固有TMD键能和基于Evans-Polanyi关系的一系列依赖于位点的活化能垒的随机模型,导致沿反应堆形状和尺寸演化的显着,定量一致性。该模型显示可扩展到WS2在800摄氏度和MoS2在各种工艺条件下的增长。最后,开发了一种简化的理论将模型转换为生长过程的“动力学相图”。该模型的预测能力及其对其他TMD系统的扩展有望显着提高此类材料的受控合成。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号