...
首页> 外文期刊>ACS nano >A 12%-Efficient Upgraded Metallurgical Grade Silicon-Organic Heterojunction Solar Cell Achieved by a Self-Purifying Process
【24h】

A 12%-Efficient Upgraded Metallurgical Grade Silicon-Organic Heterojunction Solar Cell Achieved by a Self-Purifying Process

机译:通过自净过程获得的效率提高了12%的冶金级硅有机异质结太阳能电池

获取原文
获取原文并翻译 | 示例
           

摘要

Low-quality silicon such as upgraded metallurgical-grade (UMG) silicon promises to reduce the material requirements for high-performance cost-effective photovoltaics. So far, however, UMG silicon currently exhibits the short diffusion length and serious charge recombination associated with high impurity levels, which hinders the performance of solar cells. Here, we used a metal-assisted chemical etching (MACE) method to partially upgrade the UMG silicon surface. The silicon was etched into a nanostructured one by the MACE process, associated with removing impurities on the surface. Meanwhile, nanostructured forms of UMG silicon can benefit improved light harvesting with thin substrates, which can relax the requirement of material purity for high photovoltaic performance. In order to suppress the large surface recombination due to increased surface area of nanostructured UMG silicon, a post chemical treatment was used to decrease the surface area. A solution-processed conjugated polymer of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) was deposited on UMG silicon at low temperature (<150 degrees C) to form a heterojunction to avoid any impurity diffusion in the silicon substrate. By optimizing the thickness of silicon and suppressing the charge recombination at the interface between thin UMG silicon/PEDOT:PSS, we are able to achieve 12.0%-efficient organicinorganic hybrid solar cells, which are higher than analogous UMG silicon devices. We show that the modified UMG silicon surface can increase the minority carrier lifetime because of reduced impurity and surface area. Our results suggest a design rule for an efficient silicon solar cell with low-quality silicon absorbers.
机译:劣质硅(例如升级的冶金级(UMG)硅)有望降低高性能,高性价比光伏电池的材料要求。然而,到目前为止,UMG硅目前显示出短的扩散长度和与高杂质水平相关的严重的电荷复合,这阻碍了太阳能电池的性能。在这里,我们使用了金属辅助化学蚀刻(MACE)方法来部分升级UMG硅表面。通过MACE工艺将硅蚀刻成纳米结构的硅,这与去除表面上的杂质有关。同时,纳米结构形式的UMG硅可以利用薄基板改善光收集,这可以放宽材料纯度对高光伏性能的要求。为了抑制由于纳米结构的UMG硅的表面积增加而引起的大的表面复合,使用后化学处理来减小表面积。聚(3,4-乙撑二氧噻吩):聚(苯乙烯磺酸盐)(PEDOT:PSS)的溶液处理共轭聚合物在低温(<150摄氏度)下沉积在UMG硅上以形成异质结,以避免杂质扩散硅基板。通过优化硅的厚度并抑制UMG薄硅/ PEDOT:PSS之间的界面处的电荷复合,我们能够实现效率比有机UMG硅器件高12.0%的有机无机混合太阳能电池。我们表明,由于减少了杂质和表面积,改性的UMG硅表面可以增加少数载流子寿命。我们的结果提出了具有低质量硅吸收剂的高效硅太阳能电池的设计规则。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号