...
首页> 外文期刊>ACS nano >Nanoscale-Driven Crystal Growth of Hexaferrite Heterostructures for Magnetoelectric Tuning of Microwave Semiconductor Integrated Devices
【24h】

Nanoscale-Driven Crystal Growth of Hexaferrite Heterostructures for Magnetoelectric Tuning of Microwave Semiconductor Integrated Devices

机译:六方铁氧体异质结构的纳米级驱动晶体生长,用于微波半导体集成器件的磁电调谐。

获取原文
获取原文并翻译 | 示例
           

摘要

A nanoscale-driven crystal growth of magnetic hexaferrites was successfully demonstrated at low growth temperatures (25-40% lower than the temperatures required often for crystal growth). This outcome exhibits thermodynamic processes of crystal growth, allowing ease in fabrication of advanced multifunctional materials. Most importantly, the crystal growth technique is considered theoretically and experimentally to be universal and suitable for the growth of a wide range of diverse crystals. In the present experiment, the conical spin structure of Co2Y ferrite crystals was found to give rise to an intrinsic magnetoelectric effect. Our experiment reveals a remarkable increase in the conical phase transition temperature by similar to 150 K for Co2Y ferrite, compared to 5-10 K of Zn2Y ferrites recently reported. The high quality Co2Y ferrite crystals, having low microwave loss and magnetoelectricity, were successfully grown on a wide bandgap semiconductor GaN. The demonstration of the nanostructure materials-based system on a wafer architecture is a critical milestone to next generation microwave integrated systems. It is also practical that future microwave integrated systems and their magnetic performances could be tuned by an electric field because of the magnetoelectricity of hexaferrites.
机译:在低生长温度(比晶体生长通常所需的温度低25-40%)下成功地证明了磁性六价铁氧体的纳米级晶体生长。该结果显示出晶体生长的热力学过程,从而易于制造高级多功能材料。最重要的是,晶体生长技术在理论上和实验上被认为是通用的,并且适合于多种多样的晶体的生长。在本实验中,发现Co2Y铁氧体晶体的锥形自旋结构引起固有的磁电效应。我们的实验表明,与最近报道的Zn2Y铁氧体5-10 K相比,Co2Y铁氧体的锥形相变温度显着提高了约150K。具有低微波损耗和磁电的高质量Co2Y铁氧体晶体成功地在宽带隙半导体GaN上生长。在晶圆架构上演示基于纳米结构材料的系统是下一代微波集成系统的关键里程碑。由于六价铁氧体的磁电性,将来的微波集成系统及其磁性能可以通过电场来调节,这也是实用的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号