...
首页> 外文期刊>ACS nano >Visualizing the subsurface of soft matter: Simultaneous topographical imaging, depth modulation, and compositional mapping with triple frequency atomic force microscopy
【24h】

Visualizing the subsurface of soft matter: Simultaneous topographical imaging, depth modulation, and compositional mapping with triple frequency atomic force microscopy

机译:可视化软物质的地下:同时进行地形成像,深度调制和三频原子力显微镜的成分映射

获取原文
获取原文并翻译 | 示例
           

摘要

Characterization of subsurface morphology and mechanical properties with nanoscale resolution and depth control is of significant interest in soft matter fields like biology, polymer science, and even in future applications like nanomanufacturing, where buried structural and compositional features are important to the functionality of the system. However, controllably "feeling" the subsurface is a challenging task for which the available imaging tools are relatively limited. In this paper, we propose a trimodal atomic force microscopy (AFM) imaging scheme, whereby three eigenmodes of the microcantilever probe are used as separate control "knobs" to simultaneously measure the topography, modulate sample indentation by the tip during tip-sample impact, and map compositional contrast, respectively. We illustrate this multifrequency imaging approach through computational simulation and experiments conducted on ultrathin polymer films with embedded glass nanoparticles in ambient air. By actively increasing the tip-sample indentation using a higher eigenmode of the cantilever, we are able to gradually and controllably reveal glass nanoparticles which are buried tens of nanometers deep under the surface, while still being able to refocus on the surface.
机译:具有纳米级分辨率和深度控制的地下形态和力学性能表征在生物学,高分子科学等软物质领域甚至在纳米制造等未来应用中都引起了极大关注,在这些应用中,埋藏的结构和组成特征对于系统功能至关重要。但是,可控制地“感受”地下是一项艰巨的任务,因为可用的成像工具相对有限。在本文中,我们提出了一种三峰原子力显微镜(AFM)成像方案,其中将微悬臂梁探针的三种本征模式用作单独的控制“旋钮”,以同时测量形貌,在尖端样品撞击过程中调节尖端的样品压痕,和地图成分对比。我们通过对环境空气中嵌入玻璃纳米粒子的超薄聚合物薄膜进行计算仿真和实验,说明了这种多频成像方法。通过使用较高的悬臂本征模态主动增加尖端样品的压痕,我们能够逐渐可控地揭示玻璃纳米颗粒,该纳米颗粒被埋在表面下数十纳米深处,同时仍然能够重新聚焦在表面上。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号