...
首页> 外文期刊>ACS nano >Complex F?rster energy transfer interactions between semiconductor quantum dots and a redox-active osmium assembly
【24h】

Complex F?rster energy transfer interactions between semiconductor quantum dots and a redox-active osmium assembly

机译:半导体量子点与氧化还原活性组件之间的复杂的弗斯特能量转移相互作用

获取原文
获取原文并翻译 | 示例
           

摘要

The ability of luminescent semiconductor quantum dots (QDs) to engage in diverse energy transfer processes with organic dyes, light-harvesting proteins, metal complexes, and redox-active labels continues to stimulate interest in developing them for biosensing and light-harvesting applications. Within biosensing configurations, changes in the rate of energy transfer between the QD and the proximal donor, or acceptor, based upon some external (biological) event form the principle basis for signal transduction. However, designing QD sensors to function optimally is predicated on a full understanding of all relevant energy transfer mechanisms. In this report, we examine energy transfer between a range of CdSe-ZnS core-shell QDs and a redox-active osmium(II) polypyridyl complex. To facilitate this, the Os complex was synthesized as a reactive isothiocyanate and used to label a hexahistidine-terminated peptide. The Os-labeled peptide was ratiometrically self-assembled to the QDs via metal affinity coordination, bringing the Os complex into close proximity of the nanocrystal surface. QDs displaying different emission maxima were assembled with increasing ratios of Os-peptide complex and subjected to detailed steady-state, ultrafast transient absorption, and luminescence lifetime decay analyses. Although the possibility exists for charge transfer quenching interactions, we find that the QD donors engage in relatively efficient F?rster resonance energy transfer with the Os complex acceptor despite relatively low overall spectral overlap. These results are in contrast to other similar QD donor-redox-active acceptor systems with similar separation distances, but displaying far higher spectral overlap, where charge transfer processes were reported to be the dominant QD quenching mechanism.
机译:发光半导体量子点(QD)与有机染料,光捕获蛋白,金属络合物和氧化还原活性标记物参与多种能量转移过程的能力,继续激发了人们对其开发用于生物传感和光捕获应用的兴趣。在生物传感配置中,基于某些外部(生物)事件,量子点与近端供体或受体之间能量转移速率的变化构成信号转导的主要基础。然而,设计QD传感器使其发挥最佳功能是基于对所有相关能量传输机制的全面理解。在本报告中,我们研究了一系列CdSe-ZnS核壳量子点与氧化还原活性(II)聚吡啶基配合物之间的能量转移。为了促进这一点,将Os复合物合成为反应性异硫氰酸酯,并用于标记以六组氨酸终止的肽。 Os标记的肽通过金属亲和配比按比例自组装至QD,从而使Os络合物紧密靠近纳米晶体表面。将显示不同发射最大值的QD与增加的Os-肽复合物比率组装在一起,并进行详细的稳态,超快速瞬态吸收和发光寿命衰减分析。尽管存在电荷转移猝灭相互作用的可能性,但我们发现尽管总光谱重叠较低,但QD供体仍与Os络合物受体进行了相对有效的Frster共振能量转移。这些结果与其他相似的QD供体-氧化还原-活性受体系统具有相似的分离距离相反,但显示出更高的光谱重叠,据报道其中电荷转移过程是主要的QD猝灭机制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号