首页> 外文期刊>ACS nano >Perforated semishells: Far-field directional control and optical frequency magnetic response
【24h】

Perforated semishells: Far-field directional control and optical frequency magnetic response

机译:穿孔半壳:远场方向控制和光频率磁响应

获取原文
获取原文并翻译 | 示例
           

摘要

Reduced-symmetry plasmonic nanostructures can be designed to support a range of novel optical phenomena, such as nanoscale control of the far-field scattering profile and magnetic resonances at optical frequencies. A family of reduced-symmetry nanostructures-plasmonic semishells with specifically shaped and oriented perforations introduced into the metallic shell layer-can be tailored to control these effects. Unlike core-shell nanoparticles, perforated semishells can be fabricated using a combination of clean-room techniques. For a semishell with a single spherical perforation positioned on its symmetry axis, we examine how the resonant modes of the structure depend on hole size and shape. Placing the perforation off the symmetry axis allows a family of higher-order modes to be excited in the nanostructure, along with complex near-field charge distributions for the various resonant modes. This reduced-symmetry case provides a platform for optical studies, which agree quite well with theoretical analysis. Our study also examines two important variations of this structure: a semishell with multiple perforations in the shell layer, and a semishell with a wedge-like "slice" in the shell layer. A semishell with a wedge-like perforation can be thought of as a three-dimensional analogue of a split-ring resonator (SRR), an important nanoscale component in metamaterial design. Here we show that the dimensions of the wedge-like perforation, which control the effective optical frequency resistance, inductance, and capacitance of this structure, determine the frequency of the magnetic mode.
机译:可以设计降低对称性的等离激元纳米结构,以支持一系列新颖的光学现象,例如远场散射轮廓的纳米级控制和光学频率的磁共振。可以定制一系列降低对称性的纳米结构-等离激元半壳,这些半壳具有特定形状和定向的穿孔,并引入到金属壳层中,以控制这些效果。与核-壳纳米粒子不同,可以使用无尘室技术的组合来制造穿孔的半壳。对于在对称轴上具有单个球形穿孔的半壳,我们研究了结构的共振模式如何取决于孔的大小和形状。将穿孔放置在对称轴之外,可以在纳米结构中激发一系列高阶模,以及各种谐振模的复杂近场电荷分布。这种减少对称的情况为光学研究提供了一个平台,与理论分析非常吻合。我们的研究还研究了这种结构的两个重要变化:在壳层中具有多个穿孔的半壳,以及在壳层中具有楔形“切片”的半壳。具有楔形孔眼的半壳可以被认为是裂环谐振器(SRR)的三维模拟,它是超材料设计中的重要纳米级组件。在这里,我们表明控制这种结构的有效光频率电阻,电感和电容的楔形穿孔的尺寸决定了磁模的频率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号