首页> 外文学位 >Manipulating Far-field Optical Responses in Plasmonic Nanostructures.
【24h】

Manipulating Far-field Optical Responses in Plasmonic Nanostructures.

机译:操纵等离子体纳米结构中的远场光学响应。

获取原文
获取原文并翻译 | 示例

摘要

Metallic nanostructures can confine and manipulate electromagnetic fields at the subwavelength scale through the excitation of surface plasmons. Depending on the size and shape of the nanostructures, localized or propagating surface plasmons can be excited on the metal surface. The geometry of nanostructures is crucial in the manipulation and amplification of both the far-field responses and the near-field field enhancements. This dissertation explores, both experimentally and theoretically, the manipulation of different aspects of far-field optical responses of plasmonic nanostructures including: (1) spectral responses, (2) nonlinear absorption, and (3) 3D light patterns. Through the control of different geometric parameters such as thickness, width, periodicity and particle shapes, we demonstrated tunable far field behaviors in different nanostructures. First, we provide direct evidence that both out-of-plane lattice plasmon and surface plasmon polaritons can be excited in a 1D nanograting and the two types of resonances can be controlled through the grating thickness and the line width. We further demonstrated that out-of-plane lattice plasmon is a type of Fano interference between diffraction modes and the localized surface plasmon in the thickness direction. Out-of-plane lattice plasmon can be tuned over a broad wavelength range from visible to near-infrared by manipulating the diffraction modes through the grating periodicity and azimuthal angle of the excitation. In addition, lattice plasmon is also sensitive to the out-of-plane localized surface plasmon mode which can be controlled through the grating thickness and the dielectric environment. Using nanograting with appropriate thickness, we demonstrated out-of-plane coupling in an index-mismatched environment. Moreover, we studied the nonlinear responses of different shaped nanoparticles with similar linear properties using Z-scan and pump-probe techniques. We discovered shape-dependent nonlinear spectral and time responses in the far-field induced by hot-electrons. Finally, we investigated the 3D light patterns generated from periodic hole array and we demonstrated that the ratio between the periodicity and wavelength is crucial to the 3D light patterns. These studies not only explore the unconventional plasmonic properties of different plasmonic nanostructures but also provide a comprehensive understanding on how to tune the far-field responses through the control of geometric parameters, which could be applied to chemical sensing, laser-triggered drug release and 3D lithography.
机译:金属纳米结构可以通过激发表面等离子体激元来限制和控制亚波长范围的电磁场。根据纳米结构的大小和形状,可以在金属表面上激发局部或传播的表面等离子体激元。纳米结构的几何形状对于远场响应和近场增强的操纵和放大至关重要。本文在实验和理论上探索了等离子体纳米结构远场光学响应不同方面的操纵,包括:(1)光谱响应,(2)非线性吸收和(3)3D光模式。通过控制不同的几何参数,例如厚度,宽度,周期性和粒子形状,我们展示了在不同纳米结构中可调节的远场行为。首先,我们提供直接的证据,即在一维纳米光栅中可以激发面外晶格等离激元和表面等离激元,并且可以通过光栅厚度和线宽来控制两种类型的共振。我们进一步证明,面外晶格等离激元是衍射模式与厚度方向局部表面等离激元之间的一种Fano干涉。通过操纵光栅的周期性和激发方位角来控制衍射模式,可以在从可见光到近红外的宽波长范围内调节面外晶格等离子体激元。此外,晶格等离子体激元对平面外局部表面等离子体激元模式也很敏感,该模式可以通过光栅厚度和介电环境来控制。使用具有适当厚度的纳米光栅,我们证明了在折射率不匹配的环境中的面外耦合。此外,我们使用Z扫描和泵浦探针技术研究了具有相似线性特性的不同形状纳米颗粒的非线性响应。我们在热电子感应的远场中发现了形状相关的非线性光谱和时间响应。最后,我们研究了从周期性孔阵列生成的3D光图案,并证明了周期性和波长之间的比率对于3D光图案至关重要。这些研究不仅探索了不同等离子体纳米结构的非常规等离子体特性,而且还提供了关于如何通过控制几何参数来调节远场响应的全面理解,这些方法可应用于化学传感,激光触发药物释放和3D光刻。

著录项

  • 作者

    Hua, Yi.;

  • 作者单位

    Northwestern University.;

  • 授予单位 Northwestern University.;
  • 学科 Materials science.;Optics.;Nanoscience.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 127 p.
  • 总页数 127
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号