首页> 外文期刊>ACS nano >Electronic Transport of Recrystallized Freestanding Graphene Nanoribbons
【24h】

Electronic Transport of Recrystallized Freestanding Graphene Nanoribbons

机译:重结晶的独立石墨烯纳米带的电子传输

获取原文
获取原文并翻译 | 示例
           

摘要

The use of graphene and other two-dimensional materials in next-generation electronics is hampered by the significant damage caused by conventional lithographic processing techniques employed in device fabrication. To reduce the density of defects and increase mobility, Joule heating is often used since it facilitates lattice reconstruction and promotes self-repair. Despite its importance, an atomistic understanding of the structural and electronic enhancements in graphene devices enabled by current annealing is still lacking. To provide a deeper understanding of these mechanisms, atomic recrystallization and electronic transport in graphene nanoribbon (GNR) devices are investigated using a combination of experimental and theoretical methods. GNR devices with widths below 10 nm are defined and electrically measured in situ within the sample chamber of an aberration-corrected transmission electron microscope. Immediately after patterning, we observe few-layer polycrystalline GNRs with irregular sp(2)-bonded edges. Continued structural recrystallization toward a sharp, faceted edge is promoted by increasing application of Joule heat. Monte Carlo-based annealing simulations reveal that this is a result of concentrated local currents at lattice defects, which in turn promotes restructuring of unfavorable edge structures toward an atomically sharp state. We establish that intrinsic conductance doubles to 2.7 e(2)/h during the recrystallization process following an almost 3-fold reduction in device width, which is attributed to improved device crystallinity. In addition to the observation of consistent edge bonding in patterned GNRs, we further motivate the use of bonded bilayer GNRs for future nanoelectronic components by demonstrating how electronic structure can be tailored by an appropriate modification of the relative twist angle of the bonded bilayer.
机译:石墨烯和其他二维材料在下一代电子产品中的使用受到器件制造中使用的传统光刻处理技术造成的重大损害的困扰。为了降低缺陷的密度并增加迁移率,经常使用焦耳加热,因为它有助于晶格重建并促进自我修复。尽管其重要性,但仍缺乏对通过电流退火实现的石墨烯器件的结构和电子增强的原子学理解。为了更深入地了解这些机理,我们结合实验和理论方法研究了石墨烯纳米带(GNR)器件中的原子重结晶和电子传输。定义了宽度小于10 nm的GNR设备,并在像差校正后的透射电子显微镜的样品室内对它进行了电学测量。图案化后,我们立即观察到具有不规则sp(2)结合边缘的几层多晶GNR。通过增加焦耳热的施加,促进了结构朝着锋利的,刻面的边缘继续结晶。基于蒙特卡洛的退火模拟表明,这是晶格缺陷处局部电流集中的结果,这反过来又促进了不利的边缘结构向原子锐化状态的重构。我们确定,在重结晶过程中,器件宽度几乎减小了3倍后,固有电导率翻了一番,达到2.7 e(2)/ h,这归因于器件结晶度的提高。除了观察到图案化的GNR中的边缘保持一致外,我们还通过演示如何通过适当修改键合双层的相对扭曲角来定制电子结构,进一步促进了将键合双层GNR用于未来的纳米电子元件。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号