...
首页> 外文期刊>ACS nano >Engineering Cortical Neuron Polarity with Nano magnets on a Chip
【24h】

Engineering Cortical Neuron Polarity with Nano magnets on a Chip

机译:使用芯片上的纳米磁体工程化皮质神经元极性

获取原文
获取原文并翻译 | 示例
           

摘要

Intra- and extracellular signaling play critical roles in cell polarity, ultimately leading to the development of functional cell cell connections, tissues, and organs. In the brain, pathologically oriented neurons are often the cause for disordered circuits, severely impacting motor function, perception, and memory. Aside from control through gene expression and signaling pathways, it is known that nervous system development can be manipulated by mechanical stimuli (e.g., outgrowth of axons through externally applied forces). The inverse is true as well: intracellular molecular signals can be converted into forces to yield axonal outgrowth. The complete role played by mechanical signals in mediating single-cell polarity, however, remains currently unclear. Here we employ highly parallelized nanomagnets on a chip to exert local mechanical stimuli on cortical neurons, independently of the amount of superparamagnetic nanoparticles taken up by the cells. The chip-based approach was utilized to quantify the effect of nanoparticle-mediated forces on the intracellular cytoskeleton as visualized by the distribution of the microtubule-associated protein tau. While single cortical neurons prefer to assemble tau proteins following poly-L-lysine surface cues, an optimal force range of 4.5-70 pN by the nanomagnets initiated a tau distribution opposed to the pattern cue. In larger cell clusters (groups comprising six or more cells), nanoparticle-mediated forces induced tau repositioning in an observed range of 190-270 pN, and initiation of magnetic field-directed cell displacement was observed at forces above 300 pN. Our findings lay the groundwork for high-resolution mechanical encoding of neural networks in vitro, mechanically driven cell polarization in brain tissues, and neurotherapeutic approaches using functionalized superparamagnetic nanoparticles to potentially restore disordered neural circuits.
机译:细胞内和细胞外信号传导在细胞极性中起关键作用,最终导致功能细胞连接,组织和器官的发展。在大脑中,病理取向的神经元通常是电路紊乱的原因,严重影响运动功能,知觉和记忆。除了通过基因表达和信号传导途径进行控制之外,已知神经系统的发育可以通过机械刺激(例如,轴突通过外部施加的力向外生长)来操纵。反之亦然:细胞内分子信号可以转化为产生轴突生长的力。然而,目前尚不清楚机械信号在介导单细胞极性中所起的全部作用。在这里,我们在芯片上采用高度平行的纳米磁铁,对皮质神经元施加局部机械刺激,而与细胞吸收的超顺磁性纳米粒子的量无关。通过微管相关蛋白tau的分布可见,基于芯片的方法被用于量化纳米粒子介导的力对细胞内细胞骨架的影响。虽然单个皮层神经元更喜欢在聚-L-赖氨酸表面线索之后组装tau蛋白,但纳米磁铁在4.5-70 pN的最佳作用力范围内启动了tau分布,与模式线索相反。在较大的细胞簇(包含六个或更多细胞的组)中,纳米颗粒介导的力诱导tau在190-270 pN的观察范围内重新定位,并且在高于300 pN的力下观察到了磁场定向的细胞位移的启动。我们的发现为体外神经网络的高分辨率机械编码,脑组织中机械驱动的细胞极化以及使用功能化超顺磁性纳米粒子潜在地恢复无序的神经回路的神经治疗方法奠定了基础。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号