...
首页> 外文期刊>ACS nano >Gate-Tunable Spin Exchange Interactions and Inversion of Magnetoresistance in Single Ferromagnetic ZnO Nanowires
【24h】

Gate-Tunable Spin Exchange Interactions and Inversion of Magnetoresistance in Single Ferromagnetic ZnO Nanowires

机译:铁磁ZnO纳米线中的门可调自旋交换相互作用和磁阻反转。

获取原文
获取原文并翻译 | 示例
           

摘要

Electrical control of ferromagnetism in semiconductor nanostructures offers the promise of nonvolatile functionality in future semiconductor spintronics. Here, we demonstrate a dramatic gate-induced change of ferromagnetism in ZnO nanowire (NW) field-effect transistors (FETs). Ferromagnetism in our ZnO NWs arose from oxygen vacancies, which constitute deep levels hosting unpaired electron spins. The magnetic transition temperature of the studied ZnO NWs was estimated to be well above room temperature. The in situ UV confocal photoluminescence (PL) study confirmed oxygen vacancy mediated ferromagnetism in the studied ZnO NW FET devices. Both the estimated carrier concentration and temperature-dependent conductivity reveal the studied ZnO NWs are at the crossover of the metal insulator transition. In particular, gate-induced modulation of the carrier concentration in the ZnO NW FET significantly alters carrier mediated exchange interactions, which causes even inversion of magnetoresistance (MR) from negative to positive values. Upon sweeping the gate bias from -40 to +50 V, the MRs estimated at 2 K and 2 T were changed from -11.3% to +4.1%. Detailed analysis on the gate-dependent MR behavior clearly showed enhanced spin splitting energy with increasing carrier concentration. Gate-voltage-dependent PL spectra of an individual NW device confirmed the localization of oxygen vacancy-induced spins, indicating that gate-tunable indirect exchange coupling between localized magnetic moments played an important role in the remarkable change of the MR.
机译:半导体纳米结构中铁磁性的电控制有望在未来的半导体自旋电子学中实现非易失性功能。在这里,我们证明了ZnO纳米线(NW)场效应晶体管(FET)中铁磁性的栅极引起的巨大变化。 ZnO NW中的铁磁性是由氧空位引起的,氧空位构成了不成对电子自旋的深空位。所研究的ZnO NWs的磁转变温度估计远高于室温。原位UV共聚焦光致发光(PL)研究证实了所研究的ZnO NW FET器件中氧空位介导的铁磁性。估计的载流子浓度和与温度有关的电导率都表明,所研究的ZnO NW位于金属绝缘体转变的交叉点。特别是,ZnO NW FET中载流子浓度的栅极感应调制会显着改变载流子介导的交换相互作用,这甚至会导致磁阻(MR)从负值反转为正值。在将栅极偏置从-40 V扫描到+50 V时,在2 K和2 T下估计的MR从-11.3%变为+ 4.1%。对门相关的MR行为的详细分析清楚地表明,随着载流子浓度的增加,自旋分裂能增强。单个NW器件的取决于栅极电压的PL光谱证实了氧空位引起的自旋的局部化,表明局部磁矩之间的栅极可调间接交换耦合在MR的显着变化中起着重要作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号