...
首页> 外文期刊>Global change biology >Elevated temperature shifts soil N cycling from microbial immobilization to enhanced mineralization, nitrification and denitrification across global terrestrial ecosystems
【24h】

Elevated temperature shifts soil N cycling from microbial immobilization to enhanced mineralization, nitrification and denitrification across global terrestrial ecosystems

机译:升高的温度将土壤n从微生物固定化循环以增强矿化,硝化和跨全球陆地生态系统的脱氮

获取原文
获取原文并翻译 | 示例
           

摘要

We assessed the response of soil microbial nitrogen (N) cycling and associated functional genes to elevated temperature at the global scale. A meta-analysis of 1,270 observations from 134 publications indicated that elevated temperature decreased soil microbial biomass N and increased N mineralization rates, both in the presence and absence of plants. These findings infer that elevated temperature drives microbially mediated N cycling processes from dominance by anabolic to catabolic reaction processes. Elevated temperature increased soil nitrification and denitrification rates, leading to an increase in N2O emissions of up to 227%, whether plants were present or not. Rates of N mineralization, denitrification and N2O emission demonstrated significant positive relationships with rates of CO(2)emissions under elevated temperatures, suggesting that microbial N cycling processes were associated with enhanced microbial carbon (C) metabolism due to soil warming. The response in the abundance of relevant genes to elevated temperature was not always consistent with changes in N cycling processes. While elevated temperature increased the abundances of thenirSgene with plants andnosZgenes without plants, there was no effect on the abundances of the ammonia-oxidizing archaeaamoAgene, ammonia-oxidizing bacteriaamoAandnirKgenes. This study provides the first global-scale assessment demonstrating that elevated temperature shifts N cycling from microbial immobilization to enhanced mineralization, nitrification and denitrification in terrestrial ecosystems. These findings infer that elevated temperatures have a profound impact on global N cycling processes with implications of a positive feedback to global climate and emphasize the close linkage between soil microbial C and N cycling.
机译:我们评估了土壤微生物氮(N)循环和相关官能基因在全球范围内升高的响应。从134个出版物的1,270个观察结果的荟萃分析表明,在存在和不存在植物的情况下,升高的水土微生物生物量N和N矿化率增加。这些发现推断,升高的温度驱动微生物介导的N循环过程,通过代谢到分解代谢反应过程。升高的温度提高土壤硝化和脱氮率,导致N2O排放量高达227%,是否存在植物。 N矿化,脱氮和N2O发射的速率表现出与升高温度下的CO(2)排放率的显着阳性关系,这表明由于土壤变暖引起的微生物N循环过程与增强的微生物碳(C)代谢相关。在升高的温度升高的相关基因中的响应并不总是与N循环过程的变化一致。虽然升高的温度升高了随着植物和没有植物的植物和鼻毒素的丰度,但对氨氧化古蛋白的丰度没有影响,氨氧化胆碱的含蓄。本研究提供了第一个全球规模评估,证明了从微生物固定化的升高的温度变化N循环,以提高陆地生态系统中的矿化,硝化和反硝化。这些发现推断,升高的温度对全球N循环过程产生了深远的影响,对全球气候产生了积极反馈的影响,并强调土壤微生物C和N循环之间的密切联系。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号