...
首页> 外文期刊>Applied optics >Analytic signal demodulation of phase-modulated frequency-chirped signals
【24h】

Analytic signal demodulation of phase-modulated frequency-chirped signals

机译:相位调制的chi信号的解析信号解调

获取原文
获取原文并翻译 | 示例
           

摘要

Both interferometers and frequency-modulated (FM) radios create sinusoidal signals with phase information that must be recovered. Often these two applications use narrow band signals but some applications create signals with a large bandwidth. For example, accelerated mirrors in an interferometer naturally create a chirped frequency that linearly increases with time. Chirped carriers are also used for spread-spectrum, FM transmission to reduce interference or avoid detection. In both applications, it is important to recover the underlying phase modulations that are superimposed on the chirped carrier. A common way to treat a chirped waveform is to fit zero crossings of the signal. For lower signal-to-noise applications, however, it is helpful to have a technique that utilizes data over the entire waveform (not just at zero crossings). We present a technique called analytic signal demodulation (ASD), which employs a complex heterodyne of the analytic signal to fully demodulate the chirped waveform. ASD has a much higher sensitivity for recovering phase information than is possible using a chirp demodulation on the raw data. This paper introduces a phase residual function, R_θ, that forms an analytic signal and provides a complex demodulation from the received signal in one step. The function defines a phase residual at each point on the chirped waveform, not just at the zero crossings. ASD allows sensitive detection of phase-modulated signals with a very small modulation index (much less than 0.01) that would otherwise be swamped by noise if the raw signal were complex demodulated. The mathematics used to analyze a phase-modulated chirped signal is quite general and can easily be extended for frequency profiles more complicated than a simple chirp.
机译:干涉仪和调频(FM)无线电均会产生具有必须恢复的相位信息的正弦信号。通常,这两个应用程序使用窄带信号,但是某些应用程序创建的带宽较大。例如,干涉仪中的加速镜会自然产生随时间线性增加的increases频率。 carriers载波也用于扩频,FM传输,以减少干扰或避免检测。在这两种应用中,重要的是要恢复叠加在the载波上的基础相位调制。处理线性调频波形的常用方法是使信号过零。但是,对于信噪比较低的应用,拥有一种利用整个波形上的数据(而不仅仅是零交叉)的技术会很有帮助。我们提出了一种称为分析信号解调(ASD)的技术,该技术采用了分析信号的复杂外差来完全解调the波形。与对原始数据使用线性调频解调相比,ASD对于恢复相位信息具有更高的灵敏度。本文介绍了相位残差函数R_θ,它形成一个分析信号,并一步一步地从接收到的信号中提供了复杂的解调功能。该函数在the波形上的每个点定义了相位残差,而不仅是在零交叉点。 ASD允许以很小的调制指数(远小于0.01)灵敏地检测相位调制信号,如果原始信号被复杂解调,否则将被噪声淹没。用于分析调相线性调频信号的数学非常通用,可以轻松扩展为比简单线性调频更复杂的频率曲线。

著录项

  • 来源
    《Applied optics》 |2013年第9期|共9页
  • 作者

    T. M. Niebauer;

  • 作者单位
  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号