...
首页> 外文期刊>Angewandte Chemie >Towards a Molecular View of Glass Heterogeneity
【24h】

Towards a Molecular View of Glass Heterogeneity

机译:迈向玻璃异质性的分子观

获取原文
获取原文并翻译 | 示例
           

摘要

In spite of the technological importance and ubiquity of glasses in our lives, we still lack a clear understanding of what actually happens when a non-crystallizing liquid is cooled down and turns into a disordered solid. As temperature is lowered, the liquid's viscosity increases by several orders of magnitude, and relaxation appears to come to a stop. For practical purposes, the glass-transition temperature T_g is defined as the point where relaxation becomes too slow to measure, when the viscosity reaches about 1 TPa-s. On a logarithmic scale of viscosity, there is no apparent accident or remarkable point on the viscosity curve, only a smooth Arrhenius law for strong glasses, such as silica, or a Vogel-Fulcher law for fragile glasses, such as most molecular glass formers. Combining the material's shear modulus (which characterizes its elasticity) with this viscosity, we can define a characteristic time, which, for a homogeneous medium, is scale-independent. This time, called the alpha relaxation time, can be seen as the reorganization time of the material, down to molecular scales. A characteristic shear modulus of 1 GPa and the glassy viscosity of 1 TPa-s therefore give a relaxation time of 1000 s, the reorientation time of a typical molecule at the glass transition (15 orders of magnitude longer than the relaxation time of a small molecule in the normal liquid phase, 1 ps). The above simple argument relies on the assumption of a spatially homogeneous medium and conveys a picture of the glass as a "liquid in slow motion". However, it has been known for a long time that this naive picture is deeply misleading. Adam and Gibbs have explained why the cooperation of many molecules is necessary to obtain large viscosities, within larger and larger cooperatively rearranging regions (CRRs) as the viscosity increases. Such a highly hierarchical arrangement of molecules is totally incompatible with the structure of the high-temperature liquid, in which all molecular correlations are short-ranged. The structure of a glassy liquid must therefore differ in profound ways from that of the high-temperature liquid. Although glass-forming materials have long been known to present heterogeneity,'3 no structural differences spring to the eye from regular ensemble measurements. Presumably, the inhomogeneities responsible for the cooperating rearranging regions are too subtle to show up and are averaged out in most ensemble measurements. Therefore, to understand glassy behavior, one must include heterogeneity as an essential part of the material description.
机译:尽管玻璃在生活中具有技术重要性和普遍性,但我们仍然对非晶态液体冷却并变成无序的固体时所发生的实际情况缺乏清晰的了解。随着温度降低,液体的粘度增加了几个数量级,并且松弛似乎停止了。出于实用目的,将玻璃化转变温度T_g定义为当粘度达到约1TPa-s时松弛变得太慢而无法测量的点。在粘度的对数刻度上,粘度曲线上没有明显的意外或明显的点,对于诸如二氧化硅的强力玻璃,只有光滑的阿累尼乌斯定律;对于诸如玻璃的大多数分子玻璃,对于易碎的玻璃,只有沃格尔-富尔彻定律。将材料的剪切模量(表征其弹性)与该粘度相结合,我们可以定义特征时间,对于均匀介质,该时间与尺度无关。这段时间称为α弛豫时间,可以看作是材料的重组时间,直至分子尺度。因此,特性剪切模量为1 GPa,玻璃化粘度为1 TPa-s,则弛豫时间为1000 s,这是典型分子在玻璃化转变时的重新取向时间(比小分子的弛豫时间长15个数量级)在正常液相中,为1 ps)。上面的简单论点依赖于空间均匀介质的假设,并传达了玻璃的图片为“慢动作液体”。但是,很长一段时间以来,人们就知道这种天真的画面是极具误导性的。亚当(Adam)和吉布斯(Gibbs)解释了为什么随着粘度的增加,在越来越大的协作重排区域(CRR)内,要获得大粘度,许多分子的合作是必要的。这种高度分层的分子排列与高温液体的结构完全不兼容,在高温液体中,所有分子的相关性都是短距离的。因此,玻璃状液体的结构必须与高温液体有很大的不同。尽管人们早已知道玻璃形成材料会呈现异质性,但是从常规的整体测量中并没有发现结构差异。据推测,负责协作重排区域的不均匀性太微妙,无法显示出来,并且在大多数合奏测量中都被平均掉了。因此,要了解玻璃态行为,必须将异质性作为材料描述的重要组成部分。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号