...
首页> 外文期刊>Journal of Thermal Science and Engineering Applications: Transactions of the ASME >Development of an Analytical Design Tool for Monolithic Emission Control Catalysts and Application to Nano-Textured Substrate System
【24h】

Development of an Analytical Design Tool for Monolithic Emission Control Catalysts and Application to Nano-Textured Substrate System

机译:整体式排放控制催化剂分析设计工具的开发及其在纳米织构底物系统中的应用

获取原文
获取原文并翻译 | 示例
           

摘要

An analytical transport/reaction model was developed to simulate the catalytic performance of ZnO nanowires as a catalyst support. ZnO nanowires were chosen because they have easily characterized, controllable features and a spatially uniform morphology. The analytical model couples convection in the catalyst flow channel with reaction and diffusion in the porous substrate material; it was developed to show that a simple analytical model with physics-based mass transport and empirical kinetics can be used to capture the essential physics involved in catalytic conversion of hydrocarbons. The model was effective at predicting species conversion efficiency over a range of temperature and flow rate. The model clarifies the relationship between advection, bulk diffusion, pore diffusion, and kinetics. The model was used to optimize the geometry of the experimental catalyst for which it predicted that maximum species conversion density for fixed catalyst surface occurred at a channel height of 520 μm.
机译:建立了分析传输/反应模型以模拟作为催化剂载体的ZnO纳米线的催化性能。之所以选择ZnO纳米线,是因为它们具有易于表征,可控制的特征以及空间上均一的形态。该分析模型将催化剂流动通道中的对流与多孔基质材料中的反应和扩散耦合。它的开发表明,具有基于物理学的质量传输和经验动力学的简单分析模型可用于捕获与碳氢化合物催化转化有关的基本物理学。该模型可有效预测温度和流速范围内的物种转化效率。该模型阐明了对流,整体扩散,孔隙扩散和动力学之间的关系。该模型用于优化实验催化剂的几何形状,据此可预测固定催化剂表面的最大物质转化密度发生在520μm的通道高度处。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号