...
首页> 外文期刊>Journal of Physical Organic Chemistry >Hydrogen bond nature in formamide (CYHNH_2···XH; Y=O, S, Se, Te; X=F, HO, NH_2) complexes at their ground and low-lying excited states
【24h】

Hydrogen bond nature in formamide (CYHNH_2···XH; Y=O, S, Se, Te; X=F, HO, NH_2) complexes at their ground and low-lying excited states

机译:甲酰胺(CYHNH_2···XH; Y = O,S,Se,Te; X = F,HO,NH_2)配合物在基态和低激发态的氢键性质

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

A theoretical study on the nature of hydrogen bond for formamide and its heavy complexes (CYHNH_2···XH; Y=O, S, Se, Te; X=F, HO, NH_2) was performed on the basis of density functional theory and the quantum chemistry analysis. Except for the CYHNH_2···NH_3 complexes, the substitution of O atom at formamide with less electronegative atoms (S, Se, and Te) is found to weaken the hydrogen bond (H-bond). This substitution results in cyclic structure of hydrated and ammoniated formamide complexes by the formation of bifunctional H-bonds (Y···H_4X; X···H_3C). Natural bond orbital analysis indicates that the H-bond is weakened because of less charge transfer from a lone pair orbital of H-bond acceptor to antibonding orbital of H-bond donor. The quantum theory of atoms in molecules analysis reveals that the acyclic structure with single H-bond stabilizes the complexes more than the cyclic structure formed by bifunctional H-bonds. Natural energy decomposition analysis (NEDA) and block-localized wavefunction energy decomposition (BLW-ED) analyses show that the H-bond stabilization energies of NEDA and BLW-ED have good correlation with the dissociation energy of formamide complexes and charge transfer from donor to acceptor atom play an important role in H-bonding. We have also studied the low-lying electronic excited states (T_1, T_2, and S_1) for CYHNH_2···H_2O complexes to explore the nature of H-bond on the basis of electronegativity and found that NEDA also establishes a good correlation with relative electronic energy (with respect to their ground state) and H-bond strength at their excited states.
机译:在密度泛函理论的基础上,对甲酰胺及其重配合物(CYHNH_2···XH; Y = O,S,Se,Te; X = F,HO,NH_2)的氢键性质进行了理论研究。量子化学分析。除了CYHNH_2···NH_3络合物,发现甲酰胺上的O原子被较少的负电性原子(S,Se和Te)取代会削弱氢键(H键)。这种取代通过形成双官能氢键(Y··H_4X; X··H_3C)形成水合和氨化甲酰胺配合物的环状结构。自然键轨道分析表明,由于较少的电荷从H键受体的孤对轨道转移到H键供体的反键轨道,H键被削弱。分子分析中的原子量子理论表明,具有单氢键的非环状结构比双官能氢键形成的环状结构更能稳定配合物。自然能分解分析(NEDA)和嵌段局部波函数能量分解(BLW-ED)分析表明,NEDA和BLW-ED的氢键稳定能与甲酰胺配合物的离解能和电荷从给体向受体的转移具有良好的相关性。受体原子在氢键中起重要作用。我们还研究了CYHNH_2···H_2O配合物的低价电子激发态(T_1,T_2和S_1),在电负性的基础上探索了H键的性质,发现NEDA与相对电导率也建立了良好的相关性。电子能量(相对于其基态)和其激发态下的H键强度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号