首页> 外文期刊>Journal of natural gas science and engineering >Effect of surface chemistry for CH4/CO2 adsorption in kerogen: A molecular simulation study
【24h】

Effect of surface chemistry for CH4/CO2 adsorption in kerogen: A molecular simulation study

机译:表面化学对干酪根中CH4 / CO2吸附的影响:分子模拟研究

获取原文
获取原文并翻译 | 示例
       

摘要

Molecular dynamics simulation and Grand canonical Monte Carlo (GCMC) simulation are used to investigate methane adsorption and diffusion. in kerogen. The adsorption isotherms of CH4/CO2 have been investigate by GCMC simulations at different temperatures, Adsorption behavior of both methane and carbon dioxide exhibit type-I Langmuir adsorption behavior, Langmuir equation can be used to fit for these isotherms. The temperature has a negative effect on gas adsorption, the adsorption amounts will decrease with increasing temperature at a given pressure. From the excess adsorption isotherms, there is a maximum adsorption for each temperature, suggesting there exists an optimum pressure for maximum methane storage at specific temperature. Furthermore, van der Waals interaction between adsorbate and kerogen plays a dominant role compared with Coulomb interaction in the process of adsorption, especially for CH4. The N- and S-containing function groups in kerogen have more positive effect on the single-component adsorption of CH4/CO2. The self-diffusion coefficient of CH4/CO2 which is investigated by MD simulations combined with Einstein fluid equation increase with the temperature increase at same pressure. The self-diffusion coefficient decrease with the pressure increase at same temperature. The radial distribution function is used to study structural information of CH4/CO2 adsorbed in kerogen. The volumetric strain has a direct correlation with the injected gas composition, at 340 K, the largest volumetric stain of 4.45% for CH4 and 6.52% for CO2. (C) 2016 Elsevier B.V. All rights reserved.
机译:分子动力学模拟和大经典蒙特卡洛(GCMC)模拟用于研究甲烷的吸附和扩散。在干酪根中。 CH4 / CO2的吸附等温线已通过GCMC模拟在不同温度下进行了研究,甲烷和二氧化碳的吸附行为均表现出I型Langmuir吸附行为,Langmuir方程可用于拟合这些等温线。温度对气体吸附有负面影响,在给定压力下,吸附量会随着温度的升高而降低。从过量的吸附等温线可以看出,每个温度下的吸附量最大,这表明在特定温度下存在最大甲烷存储量的最佳压力。此外,与库仑相互作用相比,被吸附物和干酪根之间的范德华相互作用起着主导作用,尤其是对于CH4。干酪根中的N和S官能团对CH4 / CO2的单组分吸附具有更积极的作用。在相同压力下,通过MD模拟结合爱因斯坦流体方程研究的CH4 / CO2自扩散系数随温度的升高而增加。在相同温度下,自扩散系数随压力的增加而减小。径向分布函数用于研究干酪根中吸附的CH4 / CO2的结构信息。体积应变与注入的气体成分直接相关,在340 K时,CH4的最大体积污渍为4.45%,CO2的最大体积污渍为6.52%。 (C)2016 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号