首页> 外文期刊>Journal of natural gas science and engineering >Thermodynamic implications of adding N-2 to CO2 for production of CH4 from hydrates
【24h】

Thermodynamic implications of adding N-2 to CO2 for production of CH4 from hydrates

机译:将N-2添加到CO2中以从水合物生产CH4的热力学意义

获取原文
获取原文并翻译 | 示例
       

摘要

The huge resources of natural gas trapped in hydrate form are widely distributed worldwide in permafrost and offshore sediments. Pressure reduction and thermal stimulation have been dominating the research into production methods over the latest decades. More recently, a novel approach has emerged based on conversion of in situ methane hydrate to carbon dioxide-dominated hydrate through injection of carbon dioxide. This work applied the free energy analysis to determine whether addition of nitrogen into the injection mixture would result in a win-win situation of simultaneous methane production and safe long term storage of CO2. Our evaluation of data from two permafrost and two offshore fields indicates that injection of carbon dioxide at concentrations exceeding 50 mol % and pressures ranging between 9 and 25 MPa will result in formation of new carbon dioxide-dominated hydrate for all of these fields. While only reservoir simulations implementing reliable thermodynamic models can verify whether given injection will result in substantial storage of carbon dioxide in the form of hydrate, thermodynamic models developed in this work have their own significance. Pressure and temperature dependencies of hydrate stability have frequently been reported in studies of hydrates in sediments as the only criteria. Extending these criteria to include the concentration dependency will make it possible to implement an efficient free energy minimization scheme able to probe local phase distributions. Since one of four hydrate reservoirs used in our thermodynamic analysis is located in Alaska, we have also investigated the upper limit of water that can be tolerated during transport under extreme conditions prevailing the winter seasons in this region. It was found that hydrate formation triggered by water adsorbing on rusty surfaces will dominate the tolerance limit, which will correspond to practically zero water concentration. (C) 2016 Elsevier B.V. All rights reserved.
机译:以水合物形式捕集的天然气的巨大资源在全球范围内广泛分布于多年冻土和近海沉积物中。在最近几十年中,减压和热刺激一直主导着生产方法的研究。最近,基于通过注入二氧化碳将原位甲烷水合物转化为二氧化碳为主的水合物的新方法已经出现。这项工作应用了自由能分析方法,以确定向注入混合物中添加氮气是否会导致同时生产甲烷和安全长期储存CO2的双赢局面。我们对来自两个永久冻土层和两个海上油田的数据的评估表明,注入浓度超过50 mol%的二氧化碳和9至25 MPa之间的压力将导致所有这些油田形成新的以二氧化碳为主的水合物。虽然只有执行可靠热力学模型的储层模拟才能验证给定注入是否会导致以水合物形式大量储存二氧化碳,但这项工作开发的热力学模型具有其自身的意义。水合物稳定性的压力和温度依赖性是研究沉积物中水合物的唯一标准。扩展这些标准以包括浓度依赖性将使得有可能实施能够探测局部相分布的有效的自由能最小化方案。由于在我们的热力学分析中使用的四个水合物储层之一位于阿拉斯加,我们还研究了在该地区冬季盛行的极端条件下运输过程中可以忍受的水的上限。已发现,由生锈表面吸附水触发的水合物形成将主导公差极限,这实际上对应于零水浓度。 (C)2016 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号