...
首页> 外文期刊>Solid-State Circuits Magazine, IEEE >Time-Encoding Analog-to-Digital Converters: Bridging the Analog Gap to Advanced Digital CMOS?Part 2: Architectures and Circuits
【24h】

Time-Encoding Analog-to-Digital Converters: Bridging the Analog Gap to Advanced Digital CMOS?Part 2: Architectures and Circuits

机译:时间编码的模数转换器:将模拟间隙桥接到高级数字CMOS?第2部分:架构和电路

获取原文
获取原文并翻译 | 示例
           

摘要

The scaling of CMOS technology deep into the nanometer range has created challenges for the design of highperformance analog ICs: they remain large in area and power consumption in spite of process scaling. Analog circuits based on time encoding [1], [2], where the signal information is encoded in the waveform transitions instead of its amplitude, have been developed to overcome these issues. While part one of this overview article [3] presented the basic principles of time encoding, this follow-up article describes and compares the main time-encoding architectures for analog-to-digital converters (ADCs) and discusses the corresponding design challenges of the circuit blocks. The focus is on structures that avoid, as much as possible, the use of traditional analog blocks like operational amplifiers (opamps) or comparators but instead use digital circuitry, ring oscillators, flip-flops, counters, an so on. Our overview of the state of the art will show that these circuits can achieve excellent performance. The obvious benefit of this highly digital approach to realizing analog functionality is that the resulting circuits are small in area and more compatible with CMOS process scaling. The approach also allows for the easy integration of these analog functions in systems on chip operating at "digital" supply voltages as low as 1V and lower. A large part of the design process can also be embedded in a standard digital synthesis flow.
机译:CMOS技术深入纳米范围的缩放为高度成绩模拟IC的设计产生了挑战:尽管流程缩放,它们在区域和功耗中保持大。基于时间编码的模拟电路[1],[2],其中信号信息在波形转换中编码而不是其幅度,以克服这些问题。此部分概述文章[3]介绍了时间编码的基本原则,但这种后续文章介绍了模数转换器(ADC)的主要时间编码架构,并讨论了相应的设计挑战电路块。重点是避免使用传统模拟块(Opamps)或比较器等传统模拟块的结构,而是使用数字电路,环形振荡器,触发器,计数器,等等。我们对本领域的概述将显示这些电路可以实现出色的性能。这种高度数字方法实现模拟功能的明显好处是,由CMOS工艺缩放的区域中产生的电路很小,更兼容。该方法还允许在以“数字”电源电压下的芯片上的系统中轻松集成这些模拟功能,从而低至1V和更低。设计过程的大部分也可以嵌入标准数字合成流程中。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号