...
首页> 外文期刊>Nuclear fusion >Solenoid-free startup experiments in DIII-D
【24h】

Solenoid-free startup experiments in DIII-D

机译:DIII-D中无电磁阀的启动实验

获取原文
获取原文并翻译 | 示例
           

摘要

A series of DIII-D experiments was performed to investigate the potential for initiating plasma current using only poloidal field coils located outside the DIII-D central solenoid, i.e. 'solenoid-free'. Plasma current to 166kA was achieved using 2-3 MW of electron cyclotron (EC) heating and was limited by coil and power supply constraints. Flux conversion to plasma current was similar to standard DIII-D startup with some degradation at higher plasma current associated with stray fields and vertical stability issues. In preliminary solenoid-free experiments, neutral beam (NB) current drive (CD) levels were small and attributed to reduced CD efficiency associated with low electron temperature produced by the low current, low confinement plasma. Lack of plasma radial position control also contributed to a reduction of NBCD. Similarly, ECCD was small owing to low plasma temperature and outside EC launch which is required in the solenoid-free scenario. Synergistic experiments were carried out using standard solenoid initiated plasmas in order to study noninductive CD in limited, Lmode plasmas, typical of that generated by solenoid-free startup. While substantial noninductive current can be driven, self-sustaining levels of noninductive current have not yet been achieved with our present six-source co-injection NB system combined with EC and fast wave systems. At low plasma current and high levels of localized EC heating, substantial MHD is generated and this was seen to severely limit plasma performance. Although further optimization is possible in the limited plasma regime, full noninductive, steady-state operation may require diverted plasma with H-mode quality confinement. Discharges obtained during the solenoid-free campaign are compared with results of previous DIII-D campaigns aimed at achieving a steady state, noninductive CD solution.
机译:进行了一系列DIII-D实验,以仅使用位于DIII-D中央螺线管外部(即“无电磁体”)的极向场线圈来研究启动等离子体电流的潜力。使用2-3兆瓦的电子回旋加速器(EC)加热可达到166kA的等离子体电流,并受线圈和电源限制。通量转换为等离子电流类似于标准DIII-D启动,但在较高的等离子电流下会出现一些退化,这与杂散场和垂直稳定性问题有关。在初步的无螺线管实验中,中性束(NB)电流驱动(CD)的水平很小,这归因于与低电流,低限制等离子体产生的低电子温度相关的CD效率降低。缺乏血浆径向位置控制也导致NBCD的减少。同样,由于等离子温度低和在无螺线管情况下需要外部EC发射,ECCD很小。使用标准螺线管引发的等离子体进行了协同实验,以便研究有限的Lmode等离子体中的无感CD,这是无螺线管启动产生的典型特征。虽然可以驱动大量的非感应电流,但我们目前的六源共注入NB系统与EC和快速波系统相结合,尚未实现自我维持水平的非感应电流。在低等离子体电流和高水平的局部EC加热下,会生成大量的MHD,这被认为会严重限制等离子体性能。尽管可以在有限的等离子体状态下进行进一步优化,但完全非感应,稳态操作可能需要具有H模式质量限制的转移等离子体。将无螺线管运动期间获得的放电与以前的DIII-D运动的结果进行比较,这些运动旨在实现稳态,无感CD解决方案。

著录项

  • 来源
    《Nuclear fusion》 |2011年第6期|p.40.1-40.11|共11页
  • 作者单位

    General Atomics, PO Box 85608, San Diego, CA 92186-5608, USA;

    EURATOM/CCFE Fusion Association, Culham Science Centre, Abingdon, OX 14 3DB UK;

    Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, NJ 08543, USA;

    General Atomics, PO Box 85608, San Diego, CA 92186-5608, USA;

    General Atomics, PO Box 85608, San Diego, CA 92186-5608, USA;

    General Atomics, PO Box 85608, San Diego, CA 92186-5608, USA;

    General Atomics, PO Box 85608, San Diego, CA 92186-5608, USA;

    General Atomics, PO Box 85608, San Diego, CA 92186-5608, USA;

    General Atomics, PO Box 85608, San Diego, CA 92186-5608, USA;

    General Atomics, PO Box 85608, San Diego, CA 92186-5608, USA;

    General Atomics, PO Box 85608, San Diego, CA 92186-5608, USA;

    General Atomics, PO Box 85608, San Diego, CA 92186-5608, USA;

    General Atomics, PO Box 85608, San Diego, CA 92186-5608, USA;

    General Atomics, PO Box 85608, San Diego, CA 92186-5608, USA;

    Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, NJ 08543, USA;

    Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, NJ 08543, USA;

    Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, NJ 08543, USA;

    National Fusion Research Institute, Daejeon 305-333, Korea;

    National Fusion Research Institute, Daejeon 305-333, Korea;

    National Fusion Research Institute, Daejeon 305-333, Korea;

    UC San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA;

    Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, USA;

    Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, USA;

    Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号