...
【24h】

Logic emulation with virtual wires

机译:使用虚拟线进行逻辑仿真

获取原文
获取原文并翻译 | 示例
           

摘要

Logic emulation enables designers to functionally verify complex integrated circuits prior to chip fabrication. However, traditional FPGA-based logic emulators have poor inter-chip communication bandwidth, commonly limiting gate utilization to less than 20%. Global routing contention mandates the use of expensive crossbar and PC-board technology in a system of otherwise low-cost commodity parts. Even with crossbar technology, current emulators only use a fraction of potential communication bandwidth because they dedicate each FPGA pin (physical wire) to a single emulated signal (logical wire). Virtual wires overcome pin limitations by intelligently multiplexing each physical wire among multiple logical wires, and pipelining these connections at the maximum clocking frequency of the FPGA. The resulting increase in bandwidth allows effective use of low-dimension direct interconnect. The size of the FPGA array can be decreased as well, resulting in low-cost logic emulation. This paper covers major contributions of the MIT Virtual Wires project. In the context of a complete emulation system, we analyze phase-based static scheduling and routing algorithms, present virtual wires synthesis methodologies, and overview an operational prototype with 20 K-gate boards. Results, including in-circuit emulation of a SPARC microprocessor, indicate that virtual wires eliminate the need for expensive crossbar technology while increasing FPGA utilization beyond 45%. Theoretical analysis predicts that virtual wires emulation scales with FPGA size and average routing distance, while traditional emulation does not.
机译:逻辑仿真使设计人员能够在芯片制造之前在功能上验证复杂的集成电路。但是,传统的基于FPGA的逻辑仿真器具有较差的芯片间通信带宽,通常将门的利用率限制在20%以下。全局路由争用要求在否则为低成本商品零件的系统中使用昂贵的纵横制和PC板技术。即使使用交叉开关技术,电流仿真器也仅使用了一部分潜在的通信带宽,因为它们将每个FPGA引脚(物理线)专用于单个仿真信号(逻辑线)。虚拟线通过智能地在多条逻辑线之间多路复用每条物理线,并以FPGA的最大时钟频率对这些连接进行流水线处理,从而克服了引脚限制。带宽的增加允许有效使用低维直接互连。 FPGA阵列的尺寸也可以减小,从而实现了低成本的逻辑仿真。本文涵盖了MIT Virtual Wires项目的主要贡献。在一个完整的仿真系统的上下文中,我们分析基于阶段的静态调度和路由算法,介绍虚拟线合成方法,并概述具有20 K门控板的操作原型。结果(包括SPARC微处理器的在线仿真)表明,虚拟线路消除了对昂贵交叉开关技术的需求,同时将FPGA利用率提高到45%以上。理论分析预测,虚拟线路仿真会随FPGA大小和平均路由距离而扩展,而传统仿真则不会。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号